{"title":"Three-Dimensional Reconstruction of a LiCoO2 Li-Ion Battery Cathode","authors":"T. Hutzenlaub, S. Thiele, R. Zengerle, C. Ziegler","doi":"10.1149/2.002203ESL","DOIUrl":null,"url":null,"abstract":"Experimental To obtain the electrode material used in this work, a new VARTA LIC 18650 WC lithium-ion battery was unsealed and dismantled. After evaporation of the electrolyte, a piece was extracted from the cathodeandpreparedforFIB/SEMbysputteringaplatinumlayeronto the surface of the sample to gain a more planar area as a starting point for the FIB. Additionally, two reference lines, one orthogonal and the other with an angle of 48.2 ◦ in relation to the cutting plane, were imprinted into the platinum layer, providing a method independent of surface skew or irregularities to determine slice thickness (Fig. 1). With the help of an FEI Quanta three-dimensional dual-beam FIBSEM at Fraunhofer IZM, Berlin, a cavity was cut into the sample as a starting point and subsequently one side of the cuboid was ablated slice by slice, while the SEM, with an angle of 38 ◦ relative to the sample surface, generated one image per slice.","PeriodicalId":11627,"journal":{"name":"Electrochemical and Solid State Letters","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical and Solid State Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.002203ESL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87
Abstract
Experimental To obtain the electrode material used in this work, a new VARTA LIC 18650 WC lithium-ion battery was unsealed and dismantled. After evaporation of the electrolyte, a piece was extracted from the cathodeandpreparedforFIB/SEMbysputteringaplatinumlayeronto the surface of the sample to gain a more planar area as a starting point for the FIB. Additionally, two reference lines, one orthogonal and the other with an angle of 48.2 ◦ in relation to the cutting plane, were imprinted into the platinum layer, providing a method independent of surface skew or irregularities to determine slice thickness (Fig. 1). With the help of an FEI Quanta three-dimensional dual-beam FIBSEM at Fraunhofer IZM, Berlin, a cavity was cut into the sample as a starting point and subsequently one side of the cuboid was ablated slice by slice, while the SEM, with an angle of 38 ◦ relative to the sample surface, generated one image per slice.