MailLeak: Obfuscation-Robust Character Extraction Using Transfer Learning

Wei Wang, Emily Sallenback, Zeyu Ning, Hugues Nelson Iradukunda, Wenxing Lu, Qingquan Zhang, Ting Zhu
{"title":"MailLeak: Obfuscation-Robust Character Extraction Using Transfer Learning","authors":"Wei Wang, Emily Sallenback, Zeyu Ning, Hugues Nelson Iradukunda, Wenxing Lu, Qingquan Zhang, Ting Zhu","doi":"10.1145/3453142.3491421","DOIUrl":null,"url":null,"abstract":"The obfuscated images on envelopes are believed to be secure and have been widely used to protect the information contained in a mail. In this paper, we present a new algorithm that can conduct character recognition from obfuscated images. Specifically, by using a transfer learning method, we prove that an attacker can effectively recognize the letter without unfolding the envelope. We believe that the presented method reveals the potential threat to current postal services. To defend against the proposed attack, we introduce a context-related shader to prevent such threats from occurring.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"152 6 1","pages":"459-464"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3491421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The obfuscated images on envelopes are believed to be secure and have been widely used to protect the information contained in a mail. In this paper, we present a new algorithm that can conduct character recognition from obfuscated images. Specifically, by using a transfer learning method, we prove that an attacker can effectively recognize the letter without unfolding the envelope. We believe that the presented method reveals the potential threat to current postal services. To defend against the proposed attack, we introduce a context-related shader to prevent such threats from occurring.
MailLeak:使用迁移学习的模糊鲁棒特征提取
信封上的模糊图像被认为是安全的,已被广泛用于保护邮件中的信息。在本文中,我们提出了一种新的算法,可以从混淆图像中进行字符识别。具体来说,通过使用迁移学习方法,我们证明了攻击者可以在不打开信封的情况下有效地识别信件。我们认为,所提出的方法揭示了对当前邮政服务的潜在威胁。为了防御提议的攻击,我们引入了一个与上下文相关的着色器来防止此类威胁的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信