{"title":"Comparison of Optimization Methods used in the Design of Functionally Graded Insulation Objects","authors":"Haoyang Yin, Wen-Dong Li, Chao Wang, Zhi-hui Jiang, Wang Guo, Guanjun Zhang","doi":"10.1109/ICEMPE51623.2021.9509090","DOIUrl":null,"url":null,"abstract":"At present, the application of functionally graded materials (FGM) in the field of solid insulation objects has become a hot issue. Applying dielectric functionally graded material (d-FGM) into insulation objects can effectively improve the insulation performance without complicating the physical structure of insulation objects. In the application of d-FGM insulators, how to select the optimal spatially distribution of dielectric parameters (conductivity or permittivity) is one of the key issues. In this paper, two typical types of algorithms (iterative algorithm and topology algorithm) are used to optimize the dielectric parameter distribution of the truncated cone insulator model. It can be seen from the optimization results that the two optimization algorithms have effectively reduced the electric field strength at triple junctions and improved the insulation performance of the insulator. Finally, the optimization effects of the two algorithms are compared, and it is found that topology optimization algorithm has better effect, with higher flexibility and advancement.","PeriodicalId":7083,"journal":{"name":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMPE51623.2021.9509090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
At present, the application of functionally graded materials (FGM) in the field of solid insulation objects has become a hot issue. Applying dielectric functionally graded material (d-FGM) into insulation objects can effectively improve the insulation performance without complicating the physical structure of insulation objects. In the application of d-FGM insulators, how to select the optimal spatially distribution of dielectric parameters (conductivity or permittivity) is one of the key issues. In this paper, two typical types of algorithms (iterative algorithm and topology algorithm) are used to optimize the dielectric parameter distribution of the truncated cone insulator model. It can be seen from the optimization results that the two optimization algorithms have effectively reduced the electric field strength at triple junctions and improved the insulation performance of the insulator. Finally, the optimization effects of the two algorithms are compared, and it is found that topology optimization algorithm has better effect, with higher flexibility and advancement.