Studying the Spread of Diseases Using Geographical Data and Irregular Topologies with Cell-DEVS

Román Cárdenas, Cristina Ruiz Martin, Gabriel A. Wainer, P. Dobias, Mark Rempel
{"title":"Studying the Spread of Diseases Using Geographical Data and Irregular Topologies with Cell-DEVS","authors":"Román Cárdenas, Cristina Ruiz Martin, Gabriel A. Wainer, P. Dobias, Mark Rempel","doi":"10.23919/ANNSIM52504.2021.9552115","DOIUrl":null,"url":null,"abstract":"Modeling and Simulation (M&S) techniques have been proven to be effective to understand how diseases spread and assess the effectiveness of decisions aimed to control them (e.g., mobility restrictions). Recently, governments used this approach to determine the evolution of the COVID-19 pandemic. In this context, M&S tools that consider geographical information can improve the quality of the simulations. This research presents a methodology that allows modelers to prototype disease spread models that include geographical information. The model can be easily parameterized for other geographical regions and diseases. We present a case study of a disease spread model to show how this methodology works.","PeriodicalId":6782,"journal":{"name":"2021 Annual Modeling and Simulation Conference (ANNSIM)","volume":"27 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM52504.2021.9552115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modeling and Simulation (M&S) techniques have been proven to be effective to understand how diseases spread and assess the effectiveness of decisions aimed to control them (e.g., mobility restrictions). Recently, governments used this approach to determine the evolution of the COVID-19 pandemic. In this context, M&S tools that consider geographical information can improve the quality of the simulations. This research presents a methodology that allows modelers to prototype disease spread models that include geographical information. The model can be easily parameterized for other geographical regions and diseases. We present a case study of a disease spread model to show how this methodology works.
利用Cell-DEVS研究地理数据和不规则拓扑的疾病传播
建模和模拟(M&S)技术已被证明是了解疾病如何传播和评估旨在控制疾病的决策(例如,行动限制)有效性的有效方法。最近,各国政府使用这种方法来确定COVID-19大流行的演变。在这种情况下,考虑地理信息的M&S工具可以提高模拟的质量。这项研究提出了一种方法,使建模者能够建立包含地理信息的疾病传播模型原型。该模型可以很容易地参数化其他地理区域和疾病。我们提出了一个疾病传播模型的案例研究来展示这种方法是如何工作的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信