Class-Based Attention Mechanism for Chest Radiograph Multi-Label Categorization

David Sriker, H. Greenspan, J. Goldberger
{"title":"Class-Based Attention Mechanism for Chest Radiograph Multi-Label Categorization","authors":"David Sriker, H. Greenspan, J. Goldberger","doi":"10.1109/ISBI52829.2022.9761667","DOIUrl":null,"url":null,"abstract":"This work focuses on a new methodology for class-based attention, which is an extension to the more common image-based attention mechanism. The class-based attention mechanism learns a different attention mask for each class. This enables to simultaneously apply a different localization procedure for different pathologies in the same image, thus important for a multilabel categorization. We apply the method to detect and localize a set of pathologies in chest Radiographs. The proposed network architecture was evaluated on publicly available X-ray datasets and yielded improved classification results compared to standard image based attention.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work focuses on a new methodology for class-based attention, which is an extension to the more common image-based attention mechanism. The class-based attention mechanism learns a different attention mask for each class. This enables to simultaneously apply a different localization procedure for different pathologies in the same image, thus important for a multilabel categorization. We apply the method to detect and localize a set of pathologies in chest Radiographs. The proposed network architecture was evaluated on publicly available X-ray datasets and yielded improved classification results compared to standard image based attention.
基于类别的胸片多标签分类注意机制
这项工作的重点是一种新的基于类的注意方法,这是对更常见的基于图像的注意机制的扩展。基于类的注意机制为每个类学习不同的注意掩码。这使得可以同时对同一图像中的不同病理应用不同的定位程序,因此对于多标签分类很重要。我们应用该方法来检测和定位胸片上的一组病理。所提出的网络架构在公开可用的x射线数据集上进行了评估,与基于标准图像的注意力相比,产生了更好的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信