On the stress overshoot in cluster crystals under shear

G. Shrivastav, G. Kahl
{"title":"On the stress overshoot in cluster crystals under shear","authors":"G. Shrivastav, G. Kahl","doi":"10.5488/CMP.23.23801","DOIUrl":null,"url":null,"abstract":"Using non-equilibrium molecular dynamics simulations we study the yielding behaviour of a model cluster crystal formed by ultrasoft particles under shear. We investigate the evolution of stress as a function of strain for different shear rates, $\\dot{\\gamma}$, and temperatures. The stress-strain relation displays a pronounced maximum at the yielding point; the height of this maximum, $\\sigma_\\text{p}$, increases via a power law with an increasing shear range and tends to saturate to a finite value if the limit shear rate goes to zero (at least within the considered temperature range). Interestingly, this behaviour can be captured by the Herschel-Bulkley type model which, for a given temperature, allows us to predict a static yield stress $\\sigma^{0}_\\text{p}$ (in the shear rate tending to zero limit), a characteristic timescale $\\tau_\\text{c}$, and the exponent $\\alpha$ of the above-mentioned power-law decay of the $\\sigma_\\text{p}$ at high shear rates. Furthermore, for different temperatures, the $\\sigma_\\text{p}$ can be scaled as functions of $\\dot{\\gamma}$ onto a single master curve when scaled by corresponding $\\tau_\\text{c}$ and ${\\sigma}_\\text{p}^{0}$. Moreover, for a given shear rate, $\\sigma_\\text{p}$ displays a logarithmic dependence on temperature. Again, the $\\sigma_\\text{p}{-}T$ curves for different shear rates can be scaled on a single logarithmic master curve when scaled by a corresponding fitting parameters.","PeriodicalId":8472,"journal":{"name":"arXiv: Soft Condensed Matter","volume":"17 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5488/CMP.23.23801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Using non-equilibrium molecular dynamics simulations we study the yielding behaviour of a model cluster crystal formed by ultrasoft particles under shear. We investigate the evolution of stress as a function of strain for different shear rates, $\dot{\gamma}$, and temperatures. The stress-strain relation displays a pronounced maximum at the yielding point; the height of this maximum, $\sigma_\text{p}$, increases via a power law with an increasing shear range and tends to saturate to a finite value if the limit shear rate goes to zero (at least within the considered temperature range). Interestingly, this behaviour can be captured by the Herschel-Bulkley type model which, for a given temperature, allows us to predict a static yield stress $\sigma^{0}_\text{p}$ (in the shear rate tending to zero limit), a characteristic timescale $\tau_\text{c}$, and the exponent $\alpha$ of the above-mentioned power-law decay of the $\sigma_\text{p}$ at high shear rates. Furthermore, for different temperatures, the $\sigma_\text{p}$ can be scaled as functions of $\dot{\gamma}$ onto a single master curve when scaled by corresponding $\tau_\text{c}$ and ${\sigma}_\text{p}^{0}$. Moreover, for a given shear rate, $\sigma_\text{p}$ displays a logarithmic dependence on temperature. Again, the $\sigma_\text{p}{-}T$ curves for different shear rates can be scaled on a single logarithmic master curve when scaled by a corresponding fitting parameters.
剪切作用下簇状晶体应力超调的研究
利用非平衡分子动力学模拟研究了由超软颗粒形成的模型簇晶体在剪切作用下的屈服行为。我们研究了应力作为应变的函数在不同剪切速率,$\dot{\gamma}$和温度下的演变。应力-应变关系在屈服点处表现出明显的最大值;这个最大值$\sigma_\text{p}$的高度随着剪切范围的增加呈幂律增加,如果极限剪切速率为零(至少在考虑的温度范围内),则趋于饱和到有限值。有趣的是,这种行为可以被Herschel-Bulkley型模型捕获,对于给定的温度,该模型允许我们预测静态屈服应力$\sigma^{0}_\text{p}$(在剪切速率趋于零极限时),特征时间尺度$\tau_\text{c}$,以及上述高剪切速率下$\sigma_\text{p}$的幂律衰减的指数$\alpha$。此外,对于不同的温度,$\sigma_\text{p}$可以作为$\dot{\gamma}$的函数,在对应的$\tau_\text{c}$和${\sigma}_\text{p}^{0}$进行缩放时,将其缩放到单个主曲线上。此外,对于给定的剪切速率,$\sigma_\text{p}$与温度呈对数关系。同样,不同剪切速率下的$\sigma_\text{p}{-}T$曲线在按相应的拟合参数进行缩放时,可以在一条对数主曲线上进行缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信