A Study on the Removal of Sulfate in Li2CO3 by Recrystallization

Kihun Kim, Yeon-Chul Cho, In-Hwan Jang, Jae-Woo Ahn
{"title":"A Study on the Removal of Sulfate in Li2CO3 by Recrystallization","authors":"Kihun Kim, Yeon-Chul Cho, In-Hwan Jang, Jae-Woo Ahn","doi":"10.7844/KIRR.2020.29.6.27","DOIUrl":null,"url":null,"abstract":"In order to remove sulfate(SO4 2-) and purify the Li2CO3, dissolution and recrystallization of crude Li2CO3 using distilled water and HCl solution was performed. When Li2CO3 was dissolved using distilled water, the amount of dissolved Li2CO3(wt.%) increased as the solution temperature decrease and showed about 1.50 wt.% at 2.5°C. In addition, when Na2CO3 was added and the Li2CO3 solution was recrystallized, the recrystallization(%) increased with increasing temperature, resulting in a 49.00 % at 95 °C. On the other hand, when Li2CO3 was dissolved using HCl solution, there was no effect of reaction temperature. As the concentration of HCl solution increased, the amount of dissolved Li2CO3(wt.%) increased, indicating 7.10 wt.% in 2.0 M HCl solution. When the LiCl solution was recrystallized by adding Na2CO3, it exhibited a recrystallization(%) of 86.10 % at a reaction temperature of 70 °C, and showed a sulfate ion removal(%) of 96.50 % or more. Finally, more than 99.10 % of Na and more than 99.90 % of sulfate were removed from the recrystallized Li2CO3 powder through water washing, and purified Li2CO3 with a purity of 99.10 % could be recovered.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Institute of Resources Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7844/KIRR.2020.29.6.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to remove sulfate(SO4 2-) and purify the Li2CO3, dissolution and recrystallization of crude Li2CO3 using distilled water and HCl solution was performed. When Li2CO3 was dissolved using distilled water, the amount of dissolved Li2CO3(wt.%) increased as the solution temperature decrease and showed about 1.50 wt.% at 2.5°C. In addition, when Na2CO3 was added and the Li2CO3 solution was recrystallized, the recrystallization(%) increased with increasing temperature, resulting in a 49.00 % at 95 °C. On the other hand, when Li2CO3 was dissolved using HCl solution, there was no effect of reaction temperature. As the concentration of HCl solution increased, the amount of dissolved Li2CO3(wt.%) increased, indicating 7.10 wt.% in 2.0 M HCl solution. When the LiCl solution was recrystallized by adding Na2CO3, it exhibited a recrystallization(%) of 86.10 % at a reaction temperature of 70 °C, and showed a sulfate ion removal(%) of 96.50 % or more. Finally, more than 99.10 % of Na and more than 99.90 % of sulfate were removed from the recrystallized Li2CO3 powder through water washing, and purified Li2CO3 with a purity of 99.10 % could be recovered.
重结晶法脱除Li2CO3中硫酸盐的研究
为了去除硫酸根(SO4 2-)和净化Li2CO3,采用蒸馏水和HCl溶液对粗Li2CO3进行了溶解和重结晶。当用蒸馏水溶解Li2CO3时,溶解Li2CO3的量(wt.%)随着溶液温度的降低而增加,在2.5℃时约为1.50 wt.%。此外,当加入Na2CO3并对Li2CO3溶液进行再结晶时,再结晶率(%)随着温度的升高而增加,在95℃时达到49.00 %。另一方面,当用HCl溶液溶解Li2CO3时,反应温度不受影响。随着HCl溶液浓度的增加,Li2CO3的溶解量(wt.%)增加,在2.0 M HCl溶液中,Li2CO3的溶解量为7.10 wt.%。加入Na2CO3对LiCl溶液进行再结晶,在70℃的反应温度下,LiCl溶液的再结晶率为86.10%,硫酸盐离子去除率达到96.50%以上。最后,通过水洗,重结晶Li2CO3粉末中Na的去除率达到99.10%以上,硫酸盐的去除率达到99.90%以上,可回收纯度为99.10%的Li2CO3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信