Convergence of Iterative Hard Thresholding Variants with Application to Asynchronous Parallel Methods for Sparse Recovery

Jamie Haddock, D. Needell, Alireza Zaeemzadeh, N. Rahnavard
{"title":"Convergence of Iterative Hard Thresholding Variants with Application to Asynchronous Parallel Methods for Sparse Recovery","authors":"Jamie Haddock, D. Needell, Alireza Zaeemzadeh, N. Rahnavard","doi":"10.1109/IEEECONF44664.2019.9048787","DOIUrl":null,"url":null,"abstract":"Recently several asynchronous parallel algorithms for sparse recovery have been proposed. These methods share an estimation of the support of the signal between nodes, which then use this information in addition to their local estimation of the support to update via an iterative hard thresholding (IHT) method. We analyze a generalized version of the IHT method run on each of the nodes and show that this method performs at least as well as the standard IHT method. We perform numerical simulations that illustrate the potential advantage these methods enjoy over the standard IHT.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"80 1","pages":"276-279"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently several asynchronous parallel algorithms for sparse recovery have been proposed. These methods share an estimation of the support of the signal between nodes, which then use this information in addition to their local estimation of the support to update via an iterative hard thresholding (IHT) method. We analyze a generalized version of the IHT method run on each of the nodes and show that this method performs at least as well as the standard IHT method. We perform numerical simulations that illustrate the potential advantage these methods enjoy over the standard IHT.
迭代硬阈值变量的收敛性及其在异步并行稀疏恢复方法中的应用
近年来,人们提出了几种用于稀疏恢复的异步并行算法。这些方法在节点之间共享信号支持度的估计,然后使用该信息以及对支持度的局部估计,通过迭代硬阈值(IHT)方法进行更新。我们分析了在每个节点上运行的通用版本的IHT方法,并表明该方法的执行至少与标准IHT方法一样好。我们进行了数值模拟,说明了这些方法比标准IHT具有潜在的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信