Abstract Harmonic Analysis on locally compact right topological groups

Prachi Loliencar
{"title":"Abstract Harmonic Analysis on locally compact right topological groups","authors":"Prachi Loliencar","doi":"10.7939/R3-VYMX-TV24","DOIUrl":null,"url":null,"abstract":"Analytic properties of right topological groups have been extensively studied in the compact admissible case (i.e when the group has a dense topological center). This was inspired by the existence of a Haar measure on such groups. In this paper, we broaden the scope of this work. We give (similar) sufficient conditions for the existence of a Haar measure on locally compact right topological groups and generalize analytic theory to this setting. We then define new measure algebra analogues in the compact setting and use these to completely characterize the existence of a Haar measure, producing sufficient conditions that do not rely on admissibility.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7939/R3-VYMX-TV24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analytic properties of right topological groups have been extensively studied in the compact admissible case (i.e when the group has a dense topological center). This was inspired by the existence of a Haar measure on such groups. In this paper, we broaden the scope of this work. We give (similar) sufficient conditions for the existence of a Haar measure on locally compact right topological groups and generalize analytic theory to this setting. We then define new measure algebra analogues in the compact setting and use these to completely characterize the existence of a Haar measure, producing sufficient conditions that do not rely on admissibility.
局部紧右拓扑群的调和分析
在紧可容许情况下(即当群具有密集拓扑中心时),对右拓扑群的解析性质进行了广泛的研究。这是受到哈尔对这类群体的衡量标准的启发。在本文中,我们拓宽了这项工作的范围。给出了局部紧右拓扑群上Haar测度存在的(类似的)充分条件,并将解析理论推广到这种情况。然后,我们在紧集合中定义了新的测度代数类似物,并利用这些类似物完整地刻画了哈尔测度的存在性,给出了不依赖于可容许性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信