Worst-case Omega ratio under distribution uncertainty with its application in robust portfolio selection

IF 0.7 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL
Qiuyang Li, Xinqiao Xie
{"title":"Worst-case Omega ratio under distribution uncertainty with its application in robust portfolio selection","authors":"Qiuyang Li, Xinqiao Xie","doi":"10.1017/s0269964823000141","DOIUrl":null,"url":null,"abstract":"\n Omega ratio, a risk-return performance measure, is defined as the ratio of the expected upside deviation of return to the expected downside deviation of return from a predetermined threshold described by an investor. Motivated by finding a solution protected against sampling errors, in this paper, we focus on the worst-case Omega ratio under distributional uncertainty and its application to robust portfolio selection. The main idea is to deal with optimization problems with all uncertain parameters within an uncertainty set. The uncertainty set of the distribution of returns given characteristic information, including the first two orders of moments and the Wasserstein distance, can handle data problems with uncertainty while making the calculation feasible.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964823000141","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Omega ratio, a risk-return performance measure, is defined as the ratio of the expected upside deviation of return to the expected downside deviation of return from a predetermined threshold described by an investor. Motivated by finding a solution protected against sampling errors, in this paper, we focus on the worst-case Omega ratio under distributional uncertainty and its application to robust portfolio selection. The main idea is to deal with optimization problems with all uncertain parameters within an uncertainty set. The uncertainty set of the distribution of returns given characteristic information, including the first two orders of moments and the Wasserstein distance, can handle data problems with uncertainty while making the calculation feasible.
分布不确定性下的最坏情况Omega比率及其在稳健投资组合选择中的应用
Omega比率是一种风险回报绩效指标,定义为预期收益的上行偏差与预期收益偏离投资者所描述的预定阈值的下行偏差之比。在寻找一个不受抽样误差影响的解决方案的激励下,本文重点研究分布不确定性下最坏情况下的Omega比率及其在稳健投资组合选择中的应用。其主要思想是处理一个不确定集中所有不确定参数的优化问题。给定特征信息的收益分布的不确定性集,包括前两阶矩和Wasserstein距离,可以处理具有不确定性的数据问题,同时使计算可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
18.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信