{"title":"Capacitability for Co-Analytic Sets","authors":"T. Slaman","doi":"10.53733/170","DOIUrl":null,"url":null,"abstract":"\n\n\nIt follows from a theorem of Davies (1952) that if A is an analytic subset of the Cantor middle third set, λ is positive and the Hausdorff s-measure of A is greater than λ, then there is a compact subset C of A such that the Hausdorff s-measure of C is greater than λ. We exhibit a counterpoint to Davies’s theorem: In Gödel’s universe of sets, there is a co-analytic subset B of the Cantor set which has full Hausdorff dimension such that if C is a closed subset of B then C is countable.\n\n\n","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
It follows from a theorem of Davies (1952) that if A is an analytic subset of the Cantor middle third set, λ is positive and the Hausdorff s-measure of A is greater than λ, then there is a compact subset C of A such that the Hausdorff s-measure of C is greater than λ. We exhibit a counterpoint to Davies’s theorem: In Gödel’s universe of sets, there is a co-analytic subset B of the Cantor set which has full Hausdorff dimension such that if C is a closed subset of B then C is countable.