Topological quantum phase transitions retrieved through unsupervised machine learning

Yanming Che, C. Gneiting, Tao Liu, F. Nori
{"title":"Topological quantum phase transitions retrieved through unsupervised machine learning","authors":"Yanming Che, C. Gneiting, Tao Liu, F. Nori","doi":"10.1103/physrevb.102.134213","DOIUrl":null,"url":null,"abstract":"The discovery of topological features of quantum states plays an important role in modern condensed matter physics and various artificial systems. Due to the absence of local order parameters, the detection of topological quantum phase transitions remains a challenge. Machine learning may provide effective methods for identifying topological features. In this work, we show that the unsupervised manifold learning can successfully retrieve topological quantum phase transitions in momentum and real space. Our results show that the Chebyshev distance between two data points sharpens the characteristic features of topological quantum phase transitions in momentum space, while the widely used Euclidean distance is in general suboptimal. Then a diffusion map or isometric map can be applied to implement the dimensionality reduction, and to learn about topological quantum phase transitions in an unsupervised manner. We demonstrate this method on the prototypical Su-Schrieffer-Heeger (SSH) model, the Qi-Wu-Zhang (QWZ) model, and the quenched SSH model in momentum space, and further provide implications and demonstrations for learning in real space, where the topological invariants could be unknown or hard to compute. The interpretable good performance of our approach shows the capability of manifold learning, when equipped with a suitable distance metric, in exploring topological quantum phase transitions.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.134213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

The discovery of topological features of quantum states plays an important role in modern condensed matter physics and various artificial systems. Due to the absence of local order parameters, the detection of topological quantum phase transitions remains a challenge. Machine learning may provide effective methods for identifying topological features. In this work, we show that the unsupervised manifold learning can successfully retrieve topological quantum phase transitions in momentum and real space. Our results show that the Chebyshev distance between two data points sharpens the characteristic features of topological quantum phase transitions in momentum space, while the widely used Euclidean distance is in general suboptimal. Then a diffusion map or isometric map can be applied to implement the dimensionality reduction, and to learn about topological quantum phase transitions in an unsupervised manner. We demonstrate this method on the prototypical Su-Schrieffer-Heeger (SSH) model, the Qi-Wu-Zhang (QWZ) model, and the quenched SSH model in momentum space, and further provide implications and demonstrations for learning in real space, where the topological invariants could be unknown or hard to compute. The interpretable good performance of our approach shows the capability of manifold learning, when equipped with a suitable distance metric, in exploring topological quantum phase transitions.
通过无监督机器学习检索拓扑量子相变
量子态拓扑特征的发现在现代凝聚态物理和各种人工系统中起着重要的作用。由于缺乏局部序参量,拓扑量子相变的检测仍然是一个挑战。机器学习可以为识别拓扑特征提供有效的方法。在这项工作中,我们证明了无监督流形学习可以成功地检索动量和实空间中的拓扑量子相变。我们的研究结果表明,两个数据点之间的切比雪夫距离可以增强动量空间中拓扑量子相变的特征特征,而广泛使用的欧几里得距离通常是次优的。然后可以应用扩散图或等距图来实现降维,并以无监督的方式了解拓扑量子相变。我们在动量空间中的原型Su-Schrieffer-Heeger (SSH)模型、Qi-Wu-Zhang (QWZ)模型和淬灭的SSH模型上演示了该方法,并进一步为拓扑不变量未知或难以计算的现实空间中的学习提供了启示和演示。我们的方法具有良好的可解释性能,表明当配备合适的距离度量时,在探索拓扑量子相变方面具有流形学习的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信