{"title":"Four Spacetime Dimensions from Multifractal Geometry","authors":"Ervin Goldfain","doi":"10.20944/PREPRINTS202104.0654.V1","DOIUrl":null,"url":null,"abstract":"As paradigm of complex behavior, multifractals describe the underlying geometry of self-similar objects or processes. Building on the connection between entropy and multifractals, we show here that the generalized dimension of geodesic trajectories in General Relativity coincides with the four-dimensionality of classical spacetime.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/PREPRINTS202104.0654.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As paradigm of complex behavior, multifractals describe the underlying geometry of self-similar objects or processes. Building on the connection between entropy and multifractals, we show here that the generalized dimension of geodesic trajectories in General Relativity coincides with the four-dimensionality of classical spacetime.