Leveraging Convolutional Pose Machines for Fast and Accurate Head Pose Estimation

Yuanzhouhan Cao, O. Canévet, J. Odobez
{"title":"Leveraging Convolutional Pose Machines for Fast and Accurate Head Pose Estimation","authors":"Yuanzhouhan Cao, O. Canévet, J. Odobez","doi":"10.1109/IROS.2018.8594223","DOIUrl":null,"url":null,"abstract":"We propose a head pose estimation framework that leverages on a recent keypoint detection model. More specifically, we apply the convolutional pose machines (CPMs) to input images, extract different types of facial keypoint features capturing appearance information and keypoint relationships, and train multilayer perceptrons (MLPs) and convolutional neural networks (CNNs) for head pose estimation. The benefit of leveraging on the CPMs (which we apply anyway for other purposes like tracking) is that we can design highly efficient models for practical usage. We evaluate our approach on the Annotated Facial Landmarks in the Wild (AFLW) dataset and achieve competitive results with the state-of-the-art.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"18 1","pages":"1089-1094"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8594223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a head pose estimation framework that leverages on a recent keypoint detection model. More specifically, we apply the convolutional pose machines (CPMs) to input images, extract different types of facial keypoint features capturing appearance information and keypoint relationships, and train multilayer perceptrons (MLPs) and convolutional neural networks (CNNs) for head pose estimation. The benefit of leveraging on the CPMs (which we apply anyway for other purposes like tracking) is that we can design highly efficient models for practical usage. We evaluate our approach on the Annotated Facial Landmarks in the Wild (AFLW) dataset and achieve competitive results with the state-of-the-art.
利用卷积姿态机进行快速准确的头部姿态估计
我们提出了一个头部姿态估计框架,该框架利用了最近的关键点检测模型。更具体地说,我们应用卷积姿态机(cpm)输入图像,提取不同类型的面部关键点特征,捕获外观信息和关键点关系,并训练多层感知器(mlp)和卷积神经网络(cnn)进行头部姿态估计。利用cpm的好处是,我们可以为实际使用设计高效的模型(我们将其应用于跟踪等其他目的)。我们在野外标注面部地标(AFLW)数据集上评估了我们的方法,并取得了与最先进技术相竞争的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信