{"title":"The mechanisms governing crack and pit formation in steel in rolling sliding contact in aqueous lubricants","authors":"J. Sullivan, M. R. Middleton","doi":"10.1002/JSL.3000060103","DOIUrl":null,"url":null,"abstract":"This paper presents the results of an investigation of the fatigue damage of steel surfaces operated in rolling/sliding contact conditions in the presence of water glycol-based fire resistant fluids. It has been shown that pitting life depends on the relative magnitude of fluid film thickness and the lubrication regime in which the system is operated. A minimum in pitting life is shown to occur in the mixed-elastohydrodynamic region. \n \n \n \nMechanisms for crack initiation, propagation and subsequent pit formation in aqueous lubricants are proposed.","PeriodicalId":17149,"journal":{"name":"Journal of Synthetic Lubrication","volume":"73 1","pages":"17-30"},"PeriodicalIF":0.0000,"publicationDate":"1989-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synthetic Lubrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/JSL.3000060103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents the results of an investigation of the fatigue damage of steel surfaces operated in rolling/sliding contact conditions in the presence of water glycol-based fire resistant fluids. It has been shown that pitting life depends on the relative magnitude of fluid film thickness and the lubrication regime in which the system is operated. A minimum in pitting life is shown to occur in the mixed-elastohydrodynamic region.
Mechanisms for crack initiation, propagation and subsequent pit formation in aqueous lubricants are proposed.