{"title":"A reduced basis method for fractional diffusion operators II","authors":"Tobias Danczul, J. Schöberl","doi":"10.1515/jnma-2020-0042","DOIUrl":null,"url":null,"abstract":"Abstract We present a novel numerical scheme to approximate the solution map s ↦ u(s) := 𝓛–sf to fractional PDEs involving elliptic operators. Reinterpreting 𝓛–s as an interpolation operator allows us to write u(s) as an integral including solutions to a parametrized family of local PDEs. We propose a reduced basis strategy on top of a finite element method to approximate its integrand. Unlike prior works, we deduce the choice of snapshots for the reduced basis procedure analytically. The integral is interpreted in a spectral setting to evaluate the surrogate directly. Its computation boils down to a matrix approximation L of the operator whose inverse is projected to the s-independent reduced space, where explicit diagonalization is feasible. Exponential convergence rates are proven rigorously. A second algorithm is presented to avoid inversion of L. Instead, we directly project the matrix to the subspace, where its negative fractional power is evaluated. A numerical comparison with the predecessor highlights its competitive performance.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2020-0042","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
Abstract
Abstract We present a novel numerical scheme to approximate the solution map s ↦ u(s) := 𝓛–sf to fractional PDEs involving elliptic operators. Reinterpreting 𝓛–s as an interpolation operator allows us to write u(s) as an integral including solutions to a parametrized family of local PDEs. We propose a reduced basis strategy on top of a finite element method to approximate its integrand. Unlike prior works, we deduce the choice of snapshots for the reduced basis procedure analytically. The integral is interpreted in a spectral setting to evaluate the surrogate directly. Its computation boils down to a matrix approximation L of the operator whose inverse is projected to the s-independent reduced space, where explicit diagonalization is feasible. Exponential convergence rates are proven rigorously. A second algorithm is presented to avoid inversion of L. Instead, we directly project the matrix to the subspace, where its negative fractional power is evaluated. A numerical comparison with the predecessor highlights its competitive performance.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.