Computing Mutual Information of Big Categorical Data and Its Application to Feature Grouping

Junli Li, Chaowei Zhang, Jifu Zhang, X. Qin
{"title":"Computing Mutual Information of Big Categorical Data and Its Application to Feature Grouping","authors":"Junli Li, Chaowei Zhang, Jifu Zhang, X. Qin","doi":"10.1109/ICDE48307.2020.00210","DOIUrl":null,"url":null,"abstract":"This paper develops a parallel computing system - MiCS - for mutual information of big categorical data on the Spark computing platform. The MiCS algorithm is conductive to processing a large amount and strong repeatability of mutual-information calculation among feature pairs by applying a column-wise transformation scheme. And to improve the efficiency of the MiCS and the utilization rate of Spark cluster resources, we adopt a virtual partitioning scheme to achieve balanced load while mitigating the data skewness problem in the Spark Shuffle process.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"1 1","pages":"1946-1949"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper develops a parallel computing system - MiCS - for mutual information of big categorical data on the Spark computing platform. The MiCS algorithm is conductive to processing a large amount and strong repeatability of mutual-information calculation among feature pairs by applying a column-wise transformation scheme. And to improve the efficiency of the MiCS and the utilization rate of Spark cluster resources, we adopt a virtual partitioning scheme to achieve balanced load while mitigating the data skewness problem in the Spark Shuffle process.
大分类数据互信息计算及其在特征分组中的应用
本文在Spark计算平台上开发了一个用于大分类数据互信息的并行计算系统MiCS。MiCS算法采用逐列转换方案,有利于处理大量、可重复性强的特征对互信息计算。为了提高mic的效率和Spark集群资源的利用率,我们采用虚拟分区方案来实现负载均衡,同时缓解Spark Shuffle过程中的数据偏度问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信