Packet-Reliability-Based Decode-and-Forward Distributed Space-Time Shift Keying

S. Sugiura, Sheng Chen, L. Hanzo
{"title":"Packet-Reliability-Based Decode-and-Forward Distributed Space-Time Shift Keying","authors":"S. Sugiura, Sheng Chen, L. Hanzo","doi":"10.1109/GLOCOM.2010.5683503","DOIUrl":null,"url":null,"abstract":"Motivated by the recent concept of Space-Time Shift Keying (STSK), we propose a novel cooperative STSK scheme, which is capable of achieving a flexible rate-diversity tradeoff, in the context of cooperative space-time transmissions. More specifically, in our cooperative STSK scheme each Relay Node (RN) activates Decode-and-Forward (DF) transmissions, depending on the success or failure of Cyclic Redundancy Checking (CRC). We propose a novel bit-to STSK mapping rule, where according to the input bits, one of the Q pre-assigned dispersion vectors is activated to implicitly convey log2 Q bits, which are transmitted in combination with the classic log2(L)-bit modulated symbol. Additionally, we introduce a beneficial dispersion vector design, which enables us to dispense with symbol-level Inter-Relay Synchronization (IRS). Furthermore, the Destination Node (DN) is capable of jointly detecting the signals received from the source-destination and relay-destination links, using a low-complexity single-stream-based Maximum Likelihood (ML) detector, which is an explicit benefit of our Inter-Element Interference (IEI)-free system model. More importantly, as a benefit of its design flexibility, our cooperative STSK arrangement enables us to adapt the number of the RNs, the transmission rate as well as the achievable diversity order.","PeriodicalId":6448,"journal":{"name":"2010 IEEE Global Telecommunications Conference GLOBECOM 2010","volume":"39 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Global Telecommunications Conference GLOBECOM 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2010.5683503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Motivated by the recent concept of Space-Time Shift Keying (STSK), we propose a novel cooperative STSK scheme, which is capable of achieving a flexible rate-diversity tradeoff, in the context of cooperative space-time transmissions. More specifically, in our cooperative STSK scheme each Relay Node (RN) activates Decode-and-Forward (DF) transmissions, depending on the success or failure of Cyclic Redundancy Checking (CRC). We propose a novel bit-to STSK mapping rule, where according to the input bits, one of the Q pre-assigned dispersion vectors is activated to implicitly convey log2 Q bits, which are transmitted in combination with the classic log2(L)-bit modulated symbol. Additionally, we introduce a beneficial dispersion vector design, which enables us to dispense with symbol-level Inter-Relay Synchronization (IRS). Furthermore, the Destination Node (DN) is capable of jointly detecting the signals received from the source-destination and relay-destination links, using a low-complexity single-stream-based Maximum Likelihood (ML) detector, which is an explicit benefit of our Inter-Element Interference (IEI)-free system model. More importantly, as a benefit of its design flexibility, our cooperative STSK arrangement enables us to adapt the number of the RNs, the transmission rate as well as the achievable diversity order.
基于包可靠性的译码转发分布式时空移位键控
受时空移位键控(STSK)概念的启发,我们提出了一种新的协同时空移位键控方案,该方案能够在协同时空传输的背景下实现灵活的速率分集权衡。更具体地说,在我们的合作STSK方案中,每个中继节点(RN)激活解码转发(DF)传输,这取决于循环冗余检查(CRC)的成功或失败。我们提出了一种新的bit-to - STSK映射规则,根据输入位,激活Q预分配色散向量中的一个隐式传输log2 Q位,并与经典的log2(L)位调制符号结合传输。此外,我们还引入了一种有益的色散矢量设计,使我们能够省去符号级中继间同步(IRS)。此外,目的节点(DN)能够使用低复杂度的基于单流的最大似然(ML)检测器联合检测从源-目的地和中继-目的地链路接收的信号,这是我们的元素间干扰(IEI)无系统模型的一个明显优点。更重要的是,由于其设计的灵活性,我们的合作STSK安排使我们能够适应rn的数量,传输速率以及可实现的分集顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信