{"title":"A variable time-step IMEX-BDF2 SAV scheme and its sharp error estimate for the Navier-Stokes equations","authors":"Yana Di, Yuheng Ma, Jie Shen, Jiwei Zhang","doi":"10.1051/m2an/2023007","DOIUrl":null,"url":null,"abstract":"We generalize the implicit-explicit (IMEX) second-order backward difference (BDF2) scalar auxil- iary variable (SAV) scheme for Navier-Stokes equation with periodic boundary conditions [11, Huang and Shen, SIAM J. Numer. Anal., 2021] to a variable time-step IMEX-BDF2 SAV scheme, and carry out a rigorous stability and convergence analysis. The key ingredients of our analysis are a new modified discrete Grönwall inequality, exploration of the discrete orthogonal convolution (DOC) kernels, and the unconditional stability of the proposed scheme. We derive global and local optimal H 1 error estimates in 2D and 3D, respectively. Our analysis provides a theoretical support for solv- ing Navier-Stokes equations using variable time-step IMEX-BDF2 SAV schemes. We also design an adaptive time-stepping strategy, and provide ample numerical examples to confirm the effectiveness and efficiency of our proposed methods.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We generalize the implicit-explicit (IMEX) second-order backward difference (BDF2) scalar auxil- iary variable (SAV) scheme for Navier-Stokes equation with periodic boundary conditions [11, Huang and Shen, SIAM J. Numer. Anal., 2021] to a variable time-step IMEX-BDF2 SAV scheme, and carry out a rigorous stability and convergence analysis. The key ingredients of our analysis are a new modified discrete Grönwall inequality, exploration of the discrete orthogonal convolution (DOC) kernels, and the unconditional stability of the proposed scheme. We derive global and local optimal H 1 error estimates in 2D and 3D, respectively. Our analysis provides a theoretical support for solv- ing Navier-Stokes equations using variable time-step IMEX-BDF2 SAV schemes. We also design an adaptive time-stepping strategy, and provide ample numerical examples to confirm the effectiveness and efficiency of our proposed methods.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.