{"title":"Derivation of wealth distributions from biased exchange of money","authors":"Fei Cao, Sébastien Motsch","doi":"10.3934/krm.2023007","DOIUrl":null,"url":null,"abstract":"In the manuscript, we are interested in using kinetic theory to better understand the time evolution of wealth distribution and their large scale behavior such as the evolution of inequality (e.g. Gini index). We investigate three type of dynamics denoted unbiased, poor-biased and rich-biased dynamics. At the particle level, one agent is picked randomly based on its wealth and one of its dollar is redistributed among the population. Proving the so-called propagation of chaos, we identify the limit of each dynamics as the number of individual approaches infinity using both coupling techniques [48] and martingale-based approach [36]. Equipped with the limit equation, we identify and prove the convergence to specific equilibrium for both the unbiased and poor-biased dynamics. In the rich-biased dynamics however, we observe a more complex behavior where a dispersive wave emerges. Although the dispersive wave is vanishing in time, its also accumulates all the wealth leading to a Gini approaching 1 (its maximum value). We characterize numerically the behavior of dispersive wave but further analytic investigation is needed to derive such dispersive wave directly from the dynamics.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"30 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2023007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
In the manuscript, we are interested in using kinetic theory to better understand the time evolution of wealth distribution and their large scale behavior such as the evolution of inequality (e.g. Gini index). We investigate three type of dynamics denoted unbiased, poor-biased and rich-biased dynamics. At the particle level, one agent is picked randomly based on its wealth and one of its dollar is redistributed among the population. Proving the so-called propagation of chaos, we identify the limit of each dynamics as the number of individual approaches infinity using both coupling techniques [48] and martingale-based approach [36]. Equipped with the limit equation, we identify and prove the convergence to specific equilibrium for both the unbiased and poor-biased dynamics. In the rich-biased dynamics however, we observe a more complex behavior where a dispersive wave emerges. Although the dispersive wave is vanishing in time, its also accumulates all the wealth leading to a Gini approaching 1 (its maximum value). We characterize numerically the behavior of dispersive wave but further analytic investigation is needed to derive such dispersive wave directly from the dynamics.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.