Идеальные прямоугольные многогранники в пространстве Лобачевского

Андрей Юрьевич Веснин, Андрей Александрович Егоров
{"title":"Идеальные прямоугольные многогранники в пространстве Лобачевского","authors":"Андрей Юрьевич Веснин, Андрей Александрович Егоров","doi":"10.22405/2226-8383-2020-21-2-65-83","DOIUrl":null,"url":null,"abstract":"In this paper we consider a class of right-angled polyhedra in three-dimensional Lobachevsky space, all vertices of which lie on the absolute. New upper bounds on volumes in terms the number of faces of the polyhedron are obtained. Volumes of polyhedra with at most 23 faces are computed. It is shown that the minimum volumes are realized on antiprisms and twisted antiprisms. The first 248 values of volumes of ideal right-angled polyhedra are presented. Moreover, the class of polyhedra with isolated triangles is introduces and there are obtained combinatorial bounds on their existence as well as minimal examples of such polyhedra are given.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"146 6 1","pages":"65-83"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22405/2226-8383-2020-21-2-65-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we consider a class of right-angled polyhedra in three-dimensional Lobachevsky space, all vertices of which lie on the absolute. New upper bounds on volumes in terms the number of faces of the polyhedron are obtained. Volumes of polyhedra with at most 23 faces are computed. It is shown that the minimum volumes are realized on antiprisms and twisted antiprisms. The first 248 values of volumes of ideal right-angled polyhedra are presented. Moreover, the class of polyhedra with isolated triangles is introduces and there are obtained combinatorial bounds on their existence as well as minimal examples of such polyhedra are given.
理想的洛巴契夫空间矩形多面体
本文考虑了三维罗巴切夫斯基空间中的一类直角多面体,其所有顶点都在绝对面上。得到了以多面体面数表示的新的体积上界。计算最多有23个面的多面体的体积。结果表明,在反棱镜和扭曲反棱镜上可以实现最小体积。给出了理想直角多面体的前248个体积值。此外,还引入了一类具有孤立三角形的多面体,并给出了该类多面体存在的组合界和该类多面体的最小例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信