A. Tessmann, A. Leuther, S. Wagner, H. Massler, M. Kuri, H. Stulz, M. Zink, M. Riessle, T. Merkle
{"title":"A 300 GHz low-noise amplifier S-MMIC for use in next-generation imaging and communication applications","authors":"A. Tessmann, A. Leuther, S. Wagner, H. Massler, M. Kuri, H. Stulz, M. Zink, M. Riessle, T. Merkle","doi":"10.1109/MWSYM.2017.8058687","DOIUrl":null,"url":null,"abstract":"A WR-3 (220–330 GHz) low-noise amplifier (LNA) circuit has been developed for use in next-generation high resolution imaging applications and ultra-high capacity communication links. The submillimeter-wave monolithic integrated circuit (S-MMIC) was realized by using a 35 nm InAlAs/InGaAs based metamorphic high electron mobility transistor (mHEMT) technology in combination with grounded coplanar waveguide topology (GCPW) and cascode transistors, thus leading to a very low noise figure in combination with high gain and large operational bandwidth. The packaged LNA circuit achieved a maximum gain of 29 dB at 314 GHz and more than 26 dB in the frequency range from 252 to 330 GHz. An average room temperature (T = 293 K) noise figure of 6.5 dB was measured between 280 and 330 GHz. Furthermore, the LNA circuit has been used to realize a very compact WR-3 single-chip receiver module, demonstrating an average conversion gain of 6.5 dB and a noise figure of 8.6 dB at the frequency of operation.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"25 4 1","pages":"760-763"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
A WR-3 (220–330 GHz) low-noise amplifier (LNA) circuit has been developed for use in next-generation high resolution imaging applications and ultra-high capacity communication links. The submillimeter-wave monolithic integrated circuit (S-MMIC) was realized by using a 35 nm InAlAs/InGaAs based metamorphic high electron mobility transistor (mHEMT) technology in combination with grounded coplanar waveguide topology (GCPW) and cascode transistors, thus leading to a very low noise figure in combination with high gain and large operational bandwidth. The packaged LNA circuit achieved a maximum gain of 29 dB at 314 GHz and more than 26 dB in the frequency range from 252 to 330 GHz. An average room temperature (T = 293 K) noise figure of 6.5 dB was measured between 280 and 330 GHz. Furthermore, the LNA circuit has been used to realize a very compact WR-3 single-chip receiver module, demonstrating an average conversion gain of 6.5 dB and a noise figure of 8.6 dB at the frequency of operation.