Detecting Fake-Normal Pornographic and Gambling Websites through one Multi-Attention HGNN

IF 2 3区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiaoqing Ma, Chao Zheng, Zhao Li, Jiang Yin, Qingyun Liu, Xunxun Chen
{"title":"Detecting Fake-Normal Pornographic and Gambling Websites through one Multi-Attention HGNN","authors":"Xiaoqing Ma, Chao Zheng, Zhao Li, Jiang Yin, Qingyun Liu, Xunxun Chen","doi":"10.1109/CSCWD57460.2023.10152775","DOIUrl":null,"url":null,"abstract":"The rapid development of pornographic and gambling websites, fueled by the widespread abuse of information technology, has become a growing concern. They pose a serious threat to the physical and mental health of children and can also endanger personal property. Therefore, it is necessary to detect them. However, pornographic and gambling websites become more and more tricky, which shows fake-normal to evade censorship and challenges traditional content-based detection methods. Therefore, it is essential to rely on information about relationships between websites.We propose HMAN, one Multi-Attention Heterogeneous Graph Neural Network (HGNN) model to detect pornographic and gambling websites by integrating content features and structural information, even if they present fake-normal. By one multi-attention mechanism consisting of explicit weight, self-attention and attention mechanism, content features can be selectively utilized with the assistance of structural information. The experimental results show that our method achieves the best 95.1% Macro-Avg-F1 and outperforms all baselines. We also illustrate that all extracted metapaths do contribute to the detection, where the hyperlink, title/meta terms and IP address are relatively important.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"1 1","pages":"1741-1747"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152775","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of pornographic and gambling websites, fueled by the widespread abuse of information technology, has become a growing concern. They pose a serious threat to the physical and mental health of children and can also endanger personal property. Therefore, it is necessary to detect them. However, pornographic and gambling websites become more and more tricky, which shows fake-normal to evade censorship and challenges traditional content-based detection methods. Therefore, it is essential to rely on information about relationships between websites.We propose HMAN, one Multi-Attention Heterogeneous Graph Neural Network (HGNN) model to detect pornographic and gambling websites by integrating content features and structural information, even if they present fake-normal. By one multi-attention mechanism consisting of explicit weight, self-attention and attention mechanism, content features can be selectively utilized with the assistance of structural information. The experimental results show that our method achieves the best 95.1% Macro-Avg-F1 and outperforms all baselines. We also illustrate that all extracted metapaths do contribute to the detection, where the hyperlink, title/meta terms and IP address are relatively important.
基于多关注HGNN的假正常色情赌博网站检测
由于信息技术的广泛滥用,色情和赌博网站的迅速发展已经成为一个日益令人担忧的问题。它们对儿童的身心健康构成严重威胁,也可能危及个人财产。因此,有必要对它们进行检测。然而,色情和赌博网站变得越来越狡猾,这表明假正常逃避审查,挑战传统的基于内容的检测方法。因此,依赖网站之间关系的信息是必要的。我们提出了一种多注意异构图神经网络(HGNN)模型,通过整合内容特征和结构信息来检测色情和赌博网站,即使它们呈现假正常。通过一种由外显权值、自我注意和注意机制组成的多注意机制,可以在结构信息的辅助下有选择地利用内容特征。实验结果表明,该方法达到了95.1%的最佳Macro-Avg-F1,优于所有基线。我们还说明了所有提取的元路径都有助于检测,其中超链接、标题/元术语和IP地址相对重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Supported Cooperative Work-The Journal of Collaborative Computing
Computer Supported Cooperative Work-The Journal of Collaborative Computing COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.40
自引率
4.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW. The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas. The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信