On indefinite Kirchhoff-type equations under the combined effect of linear and superlinear terms

Juntao Sun, Kuan‐Hsiang Wang, Tsung‐fang Wu
{"title":"On indefinite Kirchhoff-type equations under the combined effect of linear and superlinear terms","authors":"Juntao Sun, Kuan‐Hsiang Wang, Tsung‐fang Wu","doi":"10.1063/5.0030427","DOIUrl":null,"url":null,"abstract":"We investigate a class of Kirchhoff type equations involving a combination of linear and superlinear terms as follows: \\begin{equation*} -\\left( a\\int_{\\mathbb{R}^{N}}|\\nabla u|^{2}dx+1\\right) \\Delta u+\\mu V(x)u=\\lambda f(x)u+g(x)|u|^{p-2}u\\quad \\text{ in }\\mathbb{R}^{N}, \\end{equation*}% where $N\\geq 3,2 0$ and $\\mu $ sufficiently large, we obtain that at least one positive solution exists for $% 0 0$ is the principal eigenvalue of $-\\Delta $ in $H_{0}^{1}(\\Omega )$ with weight function $f_{\\Omega }:=f|_{\\Omega }$, and $\\phi _{1}>0$ is the corresponding principal eigenfunction. When $N\\geq 3$ and $2 0$ small and $0 0$ small and $\\lambda _{1}(f_{\\Omega })\\leq \\lambda 0$, at least two positive solutions exist for $a>a_{0}(p)$ and $\\lambda^{+}_{a} 0$ and $\\lambda^{+}_{a}\\geq0$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0030427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We investigate a class of Kirchhoff type equations involving a combination of linear and superlinear terms as follows: \begin{equation*} -\left( a\int_{\mathbb{R}^{N}}|\nabla u|^{2}dx+1\right) \Delta u+\mu V(x)u=\lambda f(x)u+g(x)|u|^{p-2}u\quad \text{ in }\mathbb{R}^{N}, \end{equation*}% where $N\geq 3,2 0$ and $\mu $ sufficiently large, we obtain that at least one positive solution exists for $% 0 0$ is the principal eigenvalue of $-\Delta $ in $H_{0}^{1}(\Omega )$ with weight function $f_{\Omega }:=f|_{\Omega }$, and $\phi _{1}>0$ is the corresponding principal eigenfunction. When $N\geq 3$ and $2 0$ small and $0 0$ small and $\lambda _{1}(f_{\Omega })\leq \lambda 0$, at least two positive solutions exist for $a>a_{0}(p)$ and $\lambda^{+}_{a} 0$ and $\lambda^{+}_{a}\geq0$.
线性项和超线性项联合作用下的不定kirchhoff型方程
我们研究一类涉及线性项和超线性项组合的Kirchhoff型方程,如下所示: \begin{equation*} -\left( a\int_{\mathbb{R}^{N}}|\nabla u|^{2}dx+1\right) \Delta u+\mu V(x)u=\lambda f(x)u+g(x)|u|^{p-2}u\quad \text{ in }\mathbb{R}^{N}, \end{equation*}% where $N\geq 3,2 0$ and $\mu $ sufficiently large, we obtain that at least one positive solution exists for $% 0 0$ is the principal eigenvalue of $-\Delta $ in $H_{0}^{1}(\Omega )$ with weight function $f_{\Omega }:=f|_{\Omega }$, and $\phi _{1}>0$ is the corresponding principal eigenfunction. When $N\geq 3$ and $2 0$ small and $0 0$ small and $\lambda _{1}(f_{\Omega })\leq \lambda 0$, at least two positive solutions exist for $a>a_{0}(p)$ and $\lambda^{+}_{a} 0$ and $\lambda^{+}_{a}\geq0$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信