S. Fujii, R. Ichihara, T. Konno, M. Yamaguchi, Harumi Seki, Hiroki Tanaka, Dandan Zhao, Y. Yoshimura, M. Saitoh, M. Koyama
{"title":"Ag Ionic Memory Cell Technology for Terabit-Scale High-DensityApplication","authors":"S. Fujii, R. Ichihara, T. Konno, M. Yamaguchi, Harumi Seki, Hiroki Tanaka, Dandan Zhao, Y. Yoshimura, M. Saitoh, M. Koyama","doi":"10.23919/VLSIC.2019.8778071","DOIUrl":null,"url":null,"abstract":"We demonstrated a cross-point memory array composed of 40nm Ag ionic memory cell with sub- μ A and selectorless operation and 10-year data retention, making it a promising candidate for terabit-scale high-density memory application. Discontinuous conductive path with large and dense Ag clusters enabled 10-year retention even at sub- μ A current with keeping high non-linearity in I-V. We implemented, for the first time, the improved cell into a 40nm cross-point array and demonstrated narrow read distribution which satisfies requirements for reliable array operation.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"145 7 1","pages":"T188-T189"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8778071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrated a cross-point memory array composed of 40nm Ag ionic memory cell with sub- μ A and selectorless operation and 10-year data retention, making it a promising candidate for terabit-scale high-density memory application. Discontinuous conductive path with large and dense Ag clusters enabled 10-year retention even at sub- μ A current with keeping high non-linearity in I-V. We implemented, for the first time, the improved cell into a 40nm cross-point array and demonstrated narrow read distribution which satisfies requirements for reliable array operation.