Ludwig R Sinn, Lukasz Szyrwiel, Justus Grossmann, Kate Lau, Katharina Faisst, Di Qin, Florian Mutschler, Luke Khoury, Andrew Leduc, Markus Ralser, Fabian Coscia, Matthias Selbach, Nikolai Slavov, Nagarjuna Nagaraj, Martin Steger, Vadim Demichev
{"title":"Slice-PASEF: Maximising Ion Utilisation in LC-MS Proteomics.","authors":"Ludwig R Sinn, Lukasz Szyrwiel, Justus Grossmann, Kate Lau, Katharina Faisst, Di Qin, Florian Mutschler, Luke Khoury, Andrew Leduc, Markus Ralser, Fabian Coscia, Matthias Selbach, Nikolai Slavov, Nagarjuna Nagaraj, Martin Steger, Vadim Demichev","doi":"10.1101/2022.10.31.514544","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative mass spectrometry (MS)-based proteomics has become a streamlined technology with a wide range of usage. Many emerging applications, such as single-cell proteomics, spatial proteomics of tissue sections and the profiling of low-abundant posttranslational modifications, require the analysis of minimal sample amounts and are thus constrained by the sensitivity of the workflow. Here, we present Slice-PASEF, a mass spectrometry technology that leverages trapped ion mobility separation of ions to attain the theoretical maximum of tandem MS sensitivity. We implement Slice-PASEF using a new module in our DIA-NN software and show that Slice-PASEF uniquely enables precise quantitative proteomics of low sample amounts. We further demonstrate its utility towards a range of applications, including single cell proteomics and degrader drug screens via ubiquitinomics.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.10.31.514544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative mass spectrometry (MS)-based proteomics has become a streamlined technology with a wide range of usage. Many emerging applications, such as single-cell proteomics, spatial proteomics of tissue sections and the profiling of low-abundant posttranslational modifications, require the analysis of minimal sample amounts and are thus constrained by the sensitivity of the workflow. Here, we present Slice-PASEF, a mass spectrometry technology that leverages trapped ion mobility separation of ions to attain the theoretical maximum of tandem MS sensitivity. We implement Slice-PASEF using a new module in our DIA-NN software and show that Slice-PASEF uniquely enables precise quantitative proteomics of low sample amounts. We further demonstrate its utility towards a range of applications, including single cell proteomics and degrader drug screens via ubiquitinomics.