C. Tiruppathi, M. Freichel, S. Vogel, B. Paria, D. Mehta, V. Flockerzi, A. Malik
{"title":"Impairment of Store-Operated Ca2+ Entry in TRPC4−/− Mice Interferes With Increase in Lung Microvascular Permeability","authors":"C. Tiruppathi, M. Freichel, S. Vogel, B. Paria, D. Mehta, V. Flockerzi, A. Malik","doi":"10.1161/01.RES.0000023391.40106.A8","DOIUrl":null,"url":null,"abstract":"We investigated the possibility that the TRPC gene family of putative store-operated Ca2+ entry channels contributes to the increase in microvascular endothelial permeability by prolonging the rise in intracellular Ca2+ signaling. Studies were made in wild-type (wt) and TRPC4 knockout (TRPC4−/−) mice and lung vascular endothelial cells (LECs) isolated from these animals. RT-PCR showed expression of TRPC1, TRPC3, TRPC4, and TRPC6 mRNA in wt LECs, but TRPC4 mRNA expression was not detected in TRPC4−/− LECs. We studied the response to thrombin because it is known to increase endothelial permeability by the activation of G protein-coupled proteinase-activated receptor-1 (PAR-1). In wt LECs, thrombin or PAR-1 agonist peptide (TFLLRNPNDK-NH2) resulted in a prolonged Ca2+ transient secondary to influx of Ca2+. Ca2+ influx activated by thrombin was blocked by La3+ (1 &mgr;mol/L). In TRPC4−/− LECs, thrombin or TFLLRNPNDK-NH2 produced a similar initial increase of intracellular Ca2+ secondary to Ca2+ store depletion, but Ca2+ influx induced by these agonists was drastically reduced. The defect in Ca2+ influx in TRPC4−/− endothelial cells was associated with lack of thrombin-induced actin-stress fiber formation and a reduced endothelial cell retraction response. In isolated-perfused mouse lungs, the PAR-1 agonist peptide increased microvessel filtration coefficient (Kf,c), a measure of vascular permeability, by a factor of 2.8 in wt and 1.4 in TRPC4−/−; La3+ (1 &mgr;mol/L) addition to wt lung perfusate reduced the agonist effect to that observed in TRPC4−/−. These results show that TRPC4-dependent Ca2+ entry in mouse LECs is a key determinant of increased microvascular permeability.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"1 1","pages":"70-76"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"380","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation Research: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.RES.0000023391.40106.A8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 380
Abstract
We investigated the possibility that the TRPC gene family of putative store-operated Ca2+ entry channels contributes to the increase in microvascular endothelial permeability by prolonging the rise in intracellular Ca2+ signaling. Studies were made in wild-type (wt) and TRPC4 knockout (TRPC4−/−) mice and lung vascular endothelial cells (LECs) isolated from these animals. RT-PCR showed expression of TRPC1, TRPC3, TRPC4, and TRPC6 mRNA in wt LECs, but TRPC4 mRNA expression was not detected in TRPC4−/− LECs. We studied the response to thrombin because it is known to increase endothelial permeability by the activation of G protein-coupled proteinase-activated receptor-1 (PAR-1). In wt LECs, thrombin or PAR-1 agonist peptide (TFLLRNPNDK-NH2) resulted in a prolonged Ca2+ transient secondary to influx of Ca2+. Ca2+ influx activated by thrombin was blocked by La3+ (1 &mgr;mol/L). In TRPC4−/− LECs, thrombin or TFLLRNPNDK-NH2 produced a similar initial increase of intracellular Ca2+ secondary to Ca2+ store depletion, but Ca2+ influx induced by these agonists was drastically reduced. The defect in Ca2+ influx in TRPC4−/− endothelial cells was associated with lack of thrombin-induced actin-stress fiber formation and a reduced endothelial cell retraction response. In isolated-perfused mouse lungs, the PAR-1 agonist peptide increased microvessel filtration coefficient (Kf,c), a measure of vascular permeability, by a factor of 2.8 in wt and 1.4 in TRPC4−/−; La3+ (1 &mgr;mol/L) addition to wt lung perfusate reduced the agonist effect to that observed in TRPC4−/−. These results show that TRPC4-dependent Ca2+ entry in mouse LECs is a key determinant of increased microvascular permeability.