{"title":"Kinetic Modeling of Vitamin C (Ascorbic Acid) Degradation in Blanched Commonly Consumed Salad Vegetables Using Computer Simulation Analysis","authors":"E. Awagu, E. Ekanem, A. M. Kolo, M. Adamu","doi":"10.9790/5736-1004015966","DOIUrl":null,"url":null,"abstract":"Vitamin C (ascorbic acid) is one of the most important and popular vitamins, and is contained in most fruits and vegetables; the problem with vitamin C is its easy degradation during processing. In this study, the degradation kinetics of vitamin C was determined in Lettuce and Cabbage, and the processing treatment considered was blanching at 70 0 C of water differently for 5, 10, 15, 20,25,30,35 and 40 minutes. Samples were dried in mild temperature (15–20 0 C) and ground to find dust and High Pressure liquid chromatographic (HPLC) was used for determination of the AA of vegetable salad samples which consisted of an isocratic elution procedure with UV-Visible detection at 245nm. The rate constants were calculated for both vegetable salad samples under the same processing method using the integrated law method; half-life was also calculated. Degradation of ascorbic acid in Lettuce and Cabbage under the same pretreatment procedure followed the firstorder kinetic model, as the coefficient of determination (R 2 -value) were 0.8981 and 0.9785 respectively. The rate constant of ascorbic acid degradation for Lettuce and Cabbage under the same blanching conditions were 0.099 min-1 and 0.088 min-1 respectively. The half-life of Lettuce and Cabbage were 420.0892 and 472.6004 seconds respectively. The most appropriate vegetable salad under the blanching pretreatment procedure is the cabbage because its rate constant depicted from the model equations was lower, and the half life longer, hence, slower rate of degradation. The first order forecast (Ln(C)), was 0.657964 for Lettuce and 1.330017 for Cabbage, which further authenticate that blanched Lettuce degradation was higher than Cabbage under the same pretreatment conditions.","PeriodicalId":14488,"journal":{"name":"IOSR Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOSR Journal of Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/5736-1004015966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Vitamin C (ascorbic acid) is one of the most important and popular vitamins, and is contained in most fruits and vegetables; the problem with vitamin C is its easy degradation during processing. In this study, the degradation kinetics of vitamin C was determined in Lettuce and Cabbage, and the processing treatment considered was blanching at 70 0 C of water differently for 5, 10, 15, 20,25,30,35 and 40 minutes. Samples were dried in mild temperature (15–20 0 C) and ground to find dust and High Pressure liquid chromatographic (HPLC) was used for determination of the AA of vegetable salad samples which consisted of an isocratic elution procedure with UV-Visible detection at 245nm. The rate constants were calculated for both vegetable salad samples under the same processing method using the integrated law method; half-life was also calculated. Degradation of ascorbic acid in Lettuce and Cabbage under the same pretreatment procedure followed the firstorder kinetic model, as the coefficient of determination (R 2 -value) were 0.8981 and 0.9785 respectively. The rate constant of ascorbic acid degradation for Lettuce and Cabbage under the same blanching conditions were 0.099 min-1 and 0.088 min-1 respectively. The half-life of Lettuce and Cabbage were 420.0892 and 472.6004 seconds respectively. The most appropriate vegetable salad under the blanching pretreatment procedure is the cabbage because its rate constant depicted from the model equations was lower, and the half life longer, hence, slower rate of degradation. The first order forecast (Ln(C)), was 0.657964 for Lettuce and 1.330017 for Cabbage, which further authenticate that blanched Lettuce degradation was higher than Cabbage under the same pretreatment conditions.