Computing some Laplacian Coefficients of Forests

A. Ghalavand, A. Ashrafi
{"title":"Computing some Laplacian Coefficients of Forests","authors":"A. Ghalavand, A. Ashrafi","doi":"10.1155/2022/8199547","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>G</mi>\n </math>\n </jats:inline-formula> be a finite simple graph with Laplacian polynomial <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>ψ</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <msubsup>\n <mrow>\n <mo>∑</mo>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msubsup>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mi>k</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mi>c</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>. In an earlier paper, the coefficients <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msub>\n <mrow>\n <mi>c</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>4</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>c</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>5</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> for forests with respect to some degree-based graph invariants were computed. The aim of this paper is to continue this work by giving an exact formula for the coefficient <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msub>\n <mrow>\n <mi>c</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>6</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"23 1","pages":"8199547:1-8199547:10"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/8199547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a finite simple graph with Laplacian polynomial ψ G , λ = k = 0 n 1 n k c k λ k . In an earlier paper, the coefficients c n 4 and c n 5 for forests with respect to some degree-based graph invariants were computed. The aim of this paper is to continue this work by giving an exact formula for the coefficient c n 6 .
计算森林的拉普拉斯系数
设G是一个具有拉普拉斯多项式ψ G的有限简单图,λ =∑k = 0 n−1 n−kck λ k。在之前的一篇论文中,系数c n - 4和c对一些基于度的图不变量计算了森林的N−5。本文的目的是通过给出系数cn - 6的精确公式来继续这项工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信