{"title":"Basic Properties of a Mean Field Laser Equation","authors":"F. Fagnola, C. Mora","doi":"10.1142/S123016121950015X","DOIUrl":null,"url":null,"abstract":"We study the nonlinear quantum master equation describing a laser under the mean field approximation. The quantum system is formed by a single mode optical cavity and two level atoms, which interact with reservoirs. Namely, we establish the existence and uniqueness of the regular solution to the nonlinear operator equation under consideration, as well as we get a probabilistic representation for this solution in terms of a mean field stochastic Schrödinger equation. To this end, we find a regular solution for the nonautonomous linear quantum master equation in Gorini–Kossakowski–Sudarshan–Lindblad form, and we prove the uniqueness of the solution to the nonautonomous linear adjoint quantum master equation in Gorini–Kossakowski–Sudarshan–Lindblad form. Moreover, we obtain rigorously the Maxwell–Bloch equations from the mean field laser equation.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"26 1","pages":"1950015:1-1950015:30"},"PeriodicalIF":1.3000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S123016121950015X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2
Abstract
We study the nonlinear quantum master equation describing a laser under the mean field approximation. The quantum system is formed by a single mode optical cavity and two level atoms, which interact with reservoirs. Namely, we establish the existence and uniqueness of the regular solution to the nonlinear operator equation under consideration, as well as we get a probabilistic representation for this solution in terms of a mean field stochastic Schrödinger equation. To this end, we find a regular solution for the nonautonomous linear quantum master equation in Gorini–Kossakowski–Sudarshan–Lindblad form, and we prove the uniqueness of the solution to the nonautonomous linear adjoint quantum master equation in Gorini–Kossakowski–Sudarshan–Lindblad form. Moreover, we obtain rigorously the Maxwell–Bloch equations from the mean field laser equation.
期刊介绍:
The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.