{"title":"Abstract A141: Intratumoral depletion of regulatory T-cells using CD25-targeted photodynamic therapy induces antitumoral immune responses","authors":"H. Lee, D. Oh","doi":"10.1158/2326-6074.CRICIMTEATIAACR18-A141","DOIUrl":null,"url":null,"abstract":"Tumor immunotherapy aims to overcome the immunosuppressive microenvironment within tumors, and various approaches have been developed. Tumor-associated T regulatory cells (Tregs) suppress the activation and expansion of tumor antigen-specific effector T-cells, thus providing a permissive environment for tumor growth. Therefore, optimal strategies need to be established to deplete tumor-infiltrated Tregs because systemic depletion of Tregs can result in reduced anti-tumor effector cells and autoimmunity. Here, to deplete Tregs selectively in tumors, we intratumorally injected anti-CD25 antibodies conjugated to Chlorin e6 (Ce6), a photosensitizer that absorbs light to generate reactive oxygen species. Local depletion of tumor-associated Tregs by photodynamic therapy (PDT) inhibited tumor growth, which was likely due to the altered tumor immune microenvironment that was characterized by increased infiltration of CD8+ effector T-cells and the expression of IFN-γ and CD107a, which is cytolytic granule exocytosis marker, in tumor tissues. Furthermore, PDT-induced intratumoral Treg depletion did not influence adaptive immune responses in a murine influenza infection model. Thus, our results show that intratumoral Treg-targeted PDT could specifically modulate tumor microenvironments by depleting Tregs and could be used as a novel cancer immunotherapy technique. Citation Format: Heung Kyu Lee, Dong Sun Oh. Intratumoral depletion of regulatory T-cells using CD25-targeted photodynamic therapy induces antitumoral immune responses [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A141.","PeriodicalId":18169,"journal":{"name":"Maintenance of Immune Balance: Effects of Targeted and Immune Therapies","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maintenance of Immune Balance: Effects of Targeted and Immune Therapies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-A141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor immunotherapy aims to overcome the immunosuppressive microenvironment within tumors, and various approaches have been developed. Tumor-associated T regulatory cells (Tregs) suppress the activation and expansion of tumor antigen-specific effector T-cells, thus providing a permissive environment for tumor growth. Therefore, optimal strategies need to be established to deplete tumor-infiltrated Tregs because systemic depletion of Tregs can result in reduced anti-tumor effector cells and autoimmunity. Here, to deplete Tregs selectively in tumors, we intratumorally injected anti-CD25 antibodies conjugated to Chlorin e6 (Ce6), a photosensitizer that absorbs light to generate reactive oxygen species. Local depletion of tumor-associated Tregs by photodynamic therapy (PDT) inhibited tumor growth, which was likely due to the altered tumor immune microenvironment that was characterized by increased infiltration of CD8+ effector T-cells and the expression of IFN-γ and CD107a, which is cytolytic granule exocytosis marker, in tumor tissues. Furthermore, PDT-induced intratumoral Treg depletion did not influence adaptive immune responses in a murine influenza infection model. Thus, our results show that intratumoral Treg-targeted PDT could specifically modulate tumor microenvironments by depleting Tregs and could be used as a novel cancer immunotherapy technique. Citation Format: Heung Kyu Lee, Dong Sun Oh. Intratumoral depletion of regulatory T-cells using CD25-targeted photodynamic therapy induces antitumoral immune responses [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A141.