Independence number of hypergraphs under degree conditions

Pub Date : 2022-05-05 DOI:10.1002/rsa.21151
V. Rödl, M. Sales, Yi Zhao
{"title":"Independence number of hypergraphs under degree conditions","authors":"V. Rödl, M. Sales, Yi Zhao","doi":"10.1002/rsa.21151","DOIUrl":null,"url":null,"abstract":"A well‐known result of Ajtai Komlós, Pintz, Spencer, and Szemerédi (J. Combin. Theory Ser. A 32 (1982), 321–335) states that every k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices, with girth at least five, and average degree tk−1$$ {t}^{k-1} $$ contains an independent set of size cn(logt)1/(k−1)/t$$ cn{\\left(\\log t\\right)}^{1/\\left(k-1\\right)}/t $$ for some c>0$$ c>0 $$ . In this paper we show that an independent set of the same size can be found under weaker conditions allowing certain cycles of length 2, 3, and 4. Our work is motivated by a problem of Lo and Zhao, who asked for k≥4$$ k\\ge 4 $$ , how large of an independent set a k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices necessarily has when its maximum (k−2)$$ \\left(k-2\\right) $$ ‐degree Δk−2(H)≤dn$$ {\\Delta}_{k-2}(H)\\le dn $$ . (The corresponding problem with respect to (k−1)$$ \\left(k-1\\right) $$ ‐degrees was solved by Kostochka, Mubayi, and Verstraëte (Random Struct. & Algorithms 44 (2014), 224–239).) In this paper we show that every k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices with Δk−2(H)≤dn$$ {\\Delta}_{k-2}(H)\\le dn $$ contains an independent set of size cndloglognd1/(k−1)$$ c{\\left(\\frac{n}{d}\\mathrm{loglog}\\frac{n}{d}\\right)}^{1/\\left(k-1\\right)} $$ , and under additional conditions, an independent set of size cndlognd1/(k−1)$$ c{\\left(\\frac{n}{d}\\log \\frac{n}{d}\\right)}^{1/\\left(k-1\\right)} $$ . The former assertion gives a new upper bound for the (k−2)$$ \\left(k-2\\right) $$ ‐degree Turán density of complete k$$ k $$ ‐graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A well‐known result of Ajtai Komlós, Pintz, Spencer, and Szemerédi (J. Combin. Theory Ser. A 32 (1982), 321–335) states that every k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices, with girth at least five, and average degree tk−1$$ {t}^{k-1} $$ contains an independent set of size cn(logt)1/(k−1)/t$$ cn{\left(\log t\right)}^{1/\left(k-1\right)}/t $$ for some c>0$$ c>0 $$ . In this paper we show that an independent set of the same size can be found under weaker conditions allowing certain cycles of length 2, 3, and 4. Our work is motivated by a problem of Lo and Zhao, who asked for k≥4$$ k\ge 4 $$ , how large of an independent set a k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices necessarily has when its maximum (k−2)$$ \left(k-2\right) $$ ‐degree Δk−2(H)≤dn$$ {\Delta}_{k-2}(H)\le dn $$ . (The corresponding problem with respect to (k−1)$$ \left(k-1\right) $$ ‐degrees was solved by Kostochka, Mubayi, and Verstraëte (Random Struct. & Algorithms 44 (2014), 224–239).) In this paper we show that every k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices with Δk−2(H)≤dn$$ {\Delta}_{k-2}(H)\le dn $$ contains an independent set of size cndloglognd1/(k−1)$$ c{\left(\frac{n}{d}\mathrm{loglog}\frac{n}{d}\right)}^{1/\left(k-1\right)} $$ , and under additional conditions, an independent set of size cndlognd1/(k−1)$$ c{\left(\frac{n}{d}\log \frac{n}{d}\right)}^{1/\left(k-1\right)} $$ . The former assertion gives a new upper bound for the (k−2)$$ \left(k-2\right) $$ ‐degree Turán density of complete k$$ k $$ ‐graphs.
分享
查看原文
度条件下超图的独立数
Ajtai Komlós、Pintz、Spencer和szemersamudi (J. Combin)的一个众所周知的结果。理论SerA 32(1982), 321-335)指出,每个k $$ k $$‐图H $$ H $$在n个$$ n $$顶点上,周长至少为5,平均度为tk−1 $$ {t}^{k-1} $$包含一个大小为cn(logt)1/(k−1)/t $$ cn{\left(\log t\right)}^{1/\left(k-1\right)}/t $$的独立集合,对于某些c>0 $$ c>0 $$。在本文中,我们证明了在允许长度为2,3和4的某些循环的较弱条件下,可以找到相同大小的独立集。我们的工作受到Lo和Zhao的一个问题的启发,他们要求k≥4 $$ k\ge 4 $$,当k $$ k $$‐图H $$ H $$的最大值(k−2)$$ \left(k-2\right) $$‐度Δk−2(H)≤dn $$ {\Delta}_{k-2}(H)\le dn $$时,n个$$ n $$顶点上的k ‐图H 的独立集有多大。(关于(k−1)$$ \left(k-1\right) $$‐degrees的相应问题由Kostochka, Mubayi和Verstraëte (Random Struct)解决。&算法44(2014),224-239)。在本文中,我们证明了在Δk−2(H)≤dn $$ {\Delta}_{k-2}(H)\le dn $$的n个$$ n $$顶点上的每k $$ k $$‐图H $$ H $$包含一个大小为cndloggnd1 /(k−1)$$ c{\left(\frac{n}{d}\mathrm{loglog}\frac{n}{d}\right)}^{1/\left(k-1\right)} $$的独立集,并且在附加条件下,包含一个大小为cndloggnd1 /(k−1)$$ c{\left(\frac{n}{d}\log \frac{n}{d}\right)}^{1/\left(k-1\right)} $$的独立集。前一个断言给出了完全k $$ k $$‐图的(k−2)$$ \left(k-2\right) $$‐度Turán密度的一个新的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信