Predicting precision matrices for color matching problem

IF 0.3 Q4 MATHEMATICS, APPLIED
T. Nakamoto, R. Nishii, S. Eguchi
{"title":"Predicting precision matrices for color matching problem","authors":"T. Nakamoto, R. Nishii, S. Eguchi","doi":"10.1142/S2661335219500023","DOIUrl":null,"url":null,"abstract":"In this paper, as data, ellipsoids in a color coordinate called the Commission Internationale de l’Eclairage (CIE)-Lab system are given as data for 19 colors. Each ellipsoid is a region where all points are visually recognized as the same color at the center of the coordinate system. Our aim here is to predict the shape of an ellipsoid whose center is given by a new color. We proposed two prediction methods of positive definite matrices determining ellipsoids. The first one is a nonparametric method with Gaussian kernel. The prediction is provided as a weighted sum of positive definite matrices corresponding to 19 ellipsoids in the training data. The second one is to use a matrix-valued regression model applied to a logarithm of positive definite matrices where explanatory variables are three elements of color centers. The best result was obtained by the nonparametric methods with three bandwidth parameters. The log normal regression had a weaker performance, but even so the model estimation was easily carried out.","PeriodicalId":34218,"journal":{"name":"International Journal of Mathematics for Industry","volume":"91 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics for Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2661335219500023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, as data, ellipsoids in a color coordinate called the Commission Internationale de l’Eclairage (CIE)-Lab system are given as data for 19 colors. Each ellipsoid is a region where all points are visually recognized as the same color at the center of the coordinate system. Our aim here is to predict the shape of an ellipsoid whose center is given by a new color. We proposed two prediction methods of positive definite matrices determining ellipsoids. The first one is a nonparametric method with Gaussian kernel. The prediction is provided as a weighted sum of positive definite matrices corresponding to 19 ellipsoids in the training data. The second one is to use a matrix-valued regression model applied to a logarithm of positive definite matrices where explanatory variables are three elements of color centers. The best result was obtained by the nonparametric methods with three bandwidth parameters. The log normal regression had a weaker performance, but even so the model estimation was easily carried out.
预测颜色匹配问题的精度矩阵
本文以国际照明委员会(CIE)-Lab系统的颜色坐标中的椭球为数据,给出了19种颜色的数据。每个椭球体都是一个区域,在这个区域中,所有的点在坐标系的中心被视觉识别为相同的颜色。我们这里的目的是预测一个椭球的形状,它的中心是由一个新的颜色给出的。提出了两种正定矩阵确定椭球体的预测方法。第一种是非参数高斯核方法。预测以训练数据中对应19个椭球的正定矩阵的加权和的形式提供。第二种是将矩阵值回归模型应用于正定矩阵的对数,其中解释变量是色心的三个元素。采用三种带宽参数的非参数方法得到了最好的结果。对数正态回归的性能较弱,但即使如此,模型估计也很容易进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信