{"title":"Preparation of Triacylglycerol Molecular Species by Interesterification Using Endocellular Lipase in n-Hexane","authors":"M. Kimura, K. Hasegawa, H. Takamura, T. Matoba","doi":"10.1080/00021369.1991.10860054","DOIUrl":null,"url":null,"abstract":"The interesterification of triacylglycerol with fatty acid was done to prepare triacylglycerol molecular species. Optimum operating conditions for the interesterification using a 1,3-positional specific endocellular lipase from Rhizopus japonicus NR400 in a batch system were investigated. The reaction was done at 40°C for 5 hr in the following system: Trioleoylglycerol-palmitic acid = 1:3.5 (mol/mol), 10 ml n-hexane/g trioleoylglycerol, and 2500 units of enzyme/g trioleoylglycerol. Under these conditions, the content of palmitoyl groups in 1,3-positions of triacylglycerol was about 60 mol%. Additional interesterification (2-cycle reaction) using palmitic acid and the novel triacylglycerol prepared by one-step interesterification (1-cycle reaction) resulted in a preparation of highly pure 1,3-dipalmitoyl-2-oleoylglycerol.","PeriodicalId":7729,"journal":{"name":"Agricultural and biological chemistry","volume":"2006 1","pages":"3039-3043"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and biological chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00021369.1991.10860054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The interesterification of triacylglycerol with fatty acid was done to prepare triacylglycerol molecular species. Optimum operating conditions for the interesterification using a 1,3-positional specific endocellular lipase from Rhizopus japonicus NR400 in a batch system were investigated. The reaction was done at 40°C for 5 hr in the following system: Trioleoylglycerol-palmitic acid = 1:3.5 (mol/mol), 10 ml n-hexane/g trioleoylglycerol, and 2500 units of enzyme/g trioleoylglycerol. Under these conditions, the content of palmitoyl groups in 1,3-positions of triacylglycerol was about 60 mol%. Additional interesterification (2-cycle reaction) using palmitic acid and the novel triacylglycerol prepared by one-step interesterification (1-cycle reaction) resulted in a preparation of highly pure 1,3-dipalmitoyl-2-oleoylglycerol.