Chunzheng Hu, H. Song, Yi Liu, Heng Liu, Fengtao Wang
{"title":"Dynamic characteristics of asymmetrically supported cylindrical roller bearing–rotor coupled system considering variable compliance vibration","authors":"Chunzheng Hu, H. Song, Yi Liu, Heng Liu, Fengtao Wang","doi":"10.1177/14644193231176640","DOIUrl":null,"url":null,"abstract":"This article provides a dynamic model of a cylindrical roller bearing–rotor system by combining the finite element method of the rotor and the interaction between the components of the bearing to study the dynamic response of the rotor with asymmetric support mode. The shaft is discretized by beam elements with five degrees of freedom. The bearing inner ring is consolidated with the journal of the shaft. The simulation results show that variable compliance vibration can stimulate resonance of the rotor in the sub-critical speed region. The variable compliance vibration of the rolling bearings does not occur synchronously on both sides of the asymmetric supported rotor. The increase in radial load and clearance exacerbates variable compliance vibration, while rotor imbalance has a smaller impact on variable compliance vibration. Usually, the presented coupled model can be applied to the comprehensive analysis of the vibration characteristics of all components in any cylindrical roller bearing–rotor system.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":"83 1","pages":"461 - 477"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193231176640","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article provides a dynamic model of a cylindrical roller bearing–rotor system by combining the finite element method of the rotor and the interaction between the components of the bearing to study the dynamic response of the rotor with asymmetric support mode. The shaft is discretized by beam elements with five degrees of freedom. The bearing inner ring is consolidated with the journal of the shaft. The simulation results show that variable compliance vibration can stimulate resonance of the rotor in the sub-critical speed region. The variable compliance vibration of the rolling bearings does not occur synchronously on both sides of the asymmetric supported rotor. The increase in radial load and clearance exacerbates variable compliance vibration, while rotor imbalance has a smaller impact on variable compliance vibration. Usually, the presented coupled model can be applied to the comprehensive analysis of the vibration characteristics of all components in any cylindrical roller bearing–rotor system.
期刊介绍:
The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.