Digital phenotyping in psychiatry

IF 1.7 Q3 PSYCHIATRY
Simon Williamson
{"title":"Digital phenotyping in psychiatry","authors":"Simon Williamson","doi":"10.1192/bja.2023.26","DOIUrl":null,"url":null,"abstract":"\n Advances in data science and machine learning have allowed for the analysis of increasingly complex and large data-sets. Digital devices are a source of such data, given their ability to collect information on users continuously and irrespective of location. Digital phenotyping aims to use these data to build a comprehensive picture of an individual's behaviour. Psychiatry is well-positioned to make use of this, since digital behaviour may be reflective of mental state. This article provides an overview of the field of digital phenotyping as it stands currently, on the verge of large-scale studies which may pave the way for clinical implementation in psychiatry.","PeriodicalId":9336,"journal":{"name":"BJPsych Advances","volume":"4 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJPsych Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1192/bja.2023.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in data science and machine learning have allowed for the analysis of increasingly complex and large data-sets. Digital devices are a source of such data, given their ability to collect information on users continuously and irrespective of location. Digital phenotyping aims to use these data to build a comprehensive picture of an individual's behaviour. Psychiatry is well-positioned to make use of this, since digital behaviour may be reflective of mental state. This article provides an overview of the field of digital phenotyping as it stands currently, on the verge of large-scale studies which may pave the way for clinical implementation in psychiatry.
精神病学中的数字表现型
数据科学和机器学习的进步使得分析日益复杂和庞大的数据集成为可能。数字设备是此类数据的一个来源,因为它们能够不受位置限制地持续收集用户信息。数字表现型的目的是利用这些数据来建立个人行为的全面图景。精神病学很好地利用了这一点,因为数字行为可能反映了精神状态。这篇文章提供了数字表型领域的概述,因为它目前处于大规模研究的边缘,这可能为精神病学的临床实施铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BJPsych Advances
BJPsych Advances PSYCHIATRY-
CiteScore
2.50
自引率
7.70%
发文量
75
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信