Mannheim partner curves in the special linear group

DE ThiagoA., A. Mendonça
{"title":"Mannheim partner curves in the special linear group","authors":"DE ThiagoA., A. Mendonça","doi":"10.5897/ijps2023.5023","DOIUrl":null,"url":null,"abstract":"In this study, we state some basic results about the geometry of the special linear group SL(2,R), seen as a subset of , in terms of the left invariant fields, such as bracketing, Levi Civita connection ∇ and Riemann curvature tensor R, we give some basic theorems for Mannheim partner curves in the special linear group. We also find the relations between the curvatures and torsions of these associated curves and we give necessary and sufficient conditions for a given curve to be a Mannheim partner curve of another given curve through a relation between its curvature and torsion.","PeriodicalId":14294,"journal":{"name":"International Journal of Physical Sciences","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/ijps2023.5023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we state some basic results about the geometry of the special linear group SL(2,R), seen as a subset of , in terms of the left invariant fields, such as bracketing, Levi Civita connection ∇ and Riemann curvature tensor R, we give some basic theorems for Mannheim partner curves in the special linear group. We also find the relations between the curvatures and torsions of these associated curves and we give necessary and sufficient conditions for a given curve to be a Mannheim partner curve of another given curve through a relation between its curvature and torsion.
特殊线性群中的Mannheim伙伴曲线
在本文中,我们给出了作为子集的特殊线性群SL(2,R)的几何的一些基本结果,在左不变域,如bracketing, Levi Civita连接∇和Riemann曲率张量R方面,我们给出了特殊线性群中Mannheim伴曲线的一些基本定理。我们还发现了这些关联曲线的曲率与扭转之间的关系,并通过曲率与扭转之间的关系,给出了一个给定曲线是另一个给定曲线的曼海姆伙伴曲线的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Physical Sciences
International Journal of Physical Sciences 综合性期刊-综合性期刊
自引率
0.00%
发文量
4
审稿时长
24 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信