What if the neutron star maximum mass is beyond ∼2.3 M⊙?

Xuhao Wu, S. Du, Renxin Xu
{"title":"What if the neutron star maximum mass is beyond ∼2.3 M⊙?","authors":"Xuhao Wu, S. Du, Renxin Xu","doi":"10.1093/mnras/staa3145","DOIUrl":null,"url":null,"abstract":"By assuming the formation of a black hole soon after the merger event of GW170817, Shibata et al. updated the constraints on the maximum mass ($M_\\textrm{max}$) of a stable neutron star within $\\lesssim$ 2.3 $M_{\\odot}$, but there is no solid evidence to rule out $M_\\textrm{max}>2.3~M_{\\odot}$ from the point of both microphysical and astrophysical views. In order to explain massive pulsars, it is naturally expected that the equation of state (EOS) would become stiffer beyond a specific density. In this paper, we consider the possibility of EOSs with $M_\\textrm{max}>2.3~M_{\\odot}$, investigating the stiffness and the transition density in a polytropic model. Two kinds of neutron stars are considered, i.e., normal neutron stars (the density vanishes on gravity-bound surface) and strange stars (a sharp density discontinuity on self-bound surface). The polytropic model has only two parameter inputs in both cases: ($\\rho_{\\rm t}$, $\\gamma$) for gravity-bound objects, while ($\\rho_{\\rm s}$, $\\gamma$) for self-bound ones, with $\\rho_{\\rm t}$ the transition density, $\\rho_{\\rm s}$ the surface density and $\\gamma$ the polytropic exponent. In the matter of $M_\\textrm{max}>2.3~M_{\\odot}$, it is found that the smallest $\\rho_{\\rm t}$ and $\\gamma$ should be $\\sim 0.50~\\rho_0$ and $\\sim 2.65$ for normal neutron stars, respectively, whereas for strange star, we have $\\gamma > 1.40$ if $\\rho_{\\rm s} > 1.0~\\rho_0$ and $\\rho_{\\rm s} < 1.58~\\rho_0$ if $\\gamma <2.0$ ($\\rho_0$ is the nuclear saturation density). These parametric results could guide further research of the real EOS with any foundation of microphysics if a pulsar mass higher than $2.3~M_{\\odot}$ is measured in the future. We also derive rough results of common neutron star radius range, which is $9.8~\\rm{km} < R_{1.4} < 13.8~\\rm{km}$ for normal neutron stars and $10.5~\\rm{km} < R_{1.4} < 12.5~\\rm{km}$ for strange stars.","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

By assuming the formation of a black hole soon after the merger event of GW170817, Shibata et al. updated the constraints on the maximum mass ($M_\textrm{max}$) of a stable neutron star within $\lesssim$ 2.3 $M_{\odot}$, but there is no solid evidence to rule out $M_\textrm{max}>2.3~M_{\odot}$ from the point of both microphysical and astrophysical views. In order to explain massive pulsars, it is naturally expected that the equation of state (EOS) would become stiffer beyond a specific density. In this paper, we consider the possibility of EOSs with $M_\textrm{max}>2.3~M_{\odot}$, investigating the stiffness and the transition density in a polytropic model. Two kinds of neutron stars are considered, i.e., normal neutron stars (the density vanishes on gravity-bound surface) and strange stars (a sharp density discontinuity on self-bound surface). The polytropic model has only two parameter inputs in both cases: ($\rho_{\rm t}$, $\gamma$) for gravity-bound objects, while ($\rho_{\rm s}$, $\gamma$) for self-bound ones, with $\rho_{\rm t}$ the transition density, $\rho_{\rm s}$ the surface density and $\gamma$ the polytropic exponent. In the matter of $M_\textrm{max}>2.3~M_{\odot}$, it is found that the smallest $\rho_{\rm t}$ and $\gamma$ should be $\sim 0.50~\rho_0$ and $\sim 2.65$ for normal neutron stars, respectively, whereas for strange star, we have $\gamma > 1.40$ if $\rho_{\rm s} > 1.0~\rho_0$ and $\rho_{\rm s} < 1.58~\rho_0$ if $\gamma <2.0$ ($\rho_0$ is the nuclear saturation density). These parametric results could guide further research of the real EOS with any foundation of microphysics if a pulsar mass higher than $2.3~M_{\odot}$ is measured in the future. We also derive rough results of common neutron star radius range, which is $9.8~\rm{km} < R_{1.4} < 13.8~\rm{km}$ for normal neutron stars and $10.5~\rm{km} < R_{1.4} < 12.5~\rm{km}$ for strange stars.
如果中子星的最大质量超过2.3 M⊙呢?
Shibata等人通过假设GW170817并合事件发生后不久就形成了黑洞,更新了对稳定中子星在$\lesssim$ 2.3 $M_{\odot}$内的最大质量($M_\textrm{max}$)的约束,但从微观物理和天体物理的角度来看,没有确凿的证据可以排除$M_\textrm{max}>2.3~M_{\odot}$的存在。为了解释大质量脉冲星,人们自然期望状态方程(EOS)在超过特定密度时变得更硬。本文用$M_\textrm{max}>2.3~M_{\odot}$考虑了eos的可能性,研究了多向模型的刚度和跃迁密度。考虑两种中子星,即正常中子星(密度在重力束缚面上消失)和奇异中子星(密度在自束缚面上急剧不连续)。在这两种情况下,多向性模型只有两个参数输入:对于重力束缚的物体($\rho_{\rm t}$, $\gamma$),而对于自束缚的物体($\rho_{\rm s}$, $\gamma$),其中$\rho_{\rm t}$为过渡密度,$\rho_{\rm s}$为表面密度,$\gamma$为多向性指数。在$M_\textrm{max}>2.3~M_{\odot}$问题中,发现对于正常中子星,最小的$\rho_{\rm t}$和最小的$\gamma$分别为$\sim 0.50~\rho_0$和$\sim 2.65$,而对于奇异星,最小的$\gamma > 1.40$如果$\rho_{\rm s} > 1.0~\rho_0$,最小的$\rho_{\rm s} < 1.58~\rho_0$如果$\gamma <2.0$ ($\rho_0$为核饱和密度)。这些参数结果可以指导未来在任何微物理基础上对质量大于$2.3~M_{\odot}$的脉冲星的进一步研究。我们还得到了常见中子星半径范围的粗略结果,正常中子星为$9.8~\rm{km} < R_{1.4} < 13.8~\rm{km}$,奇异星为$10.5~\rm{km} < R_{1.4} < 12.5~\rm{km}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信