Technical Note - The Elliptical Potential Lemma for General Distributions with an Application to Linear Thompson Sampling

Oper. Res. Pub Date : 2022-08-04 DOI:10.1287/opre.2022.2274
N. Hamidi, M. Bayati
{"title":"Technical Note - The Elliptical Potential Lemma for General Distributions with an Application to Linear Thompson Sampling","authors":"N. Hamidi, M. Bayati","doi":"10.1287/opre.2022.2274","DOIUrl":null,"url":null,"abstract":"A General Elliptical Potential Lemma In sequential learning and decision-making problems, the elliptical potential lemma is a key technique to quantify the decrease in the uncertainty of the model as more observations are obtained. However, it requires the observation noise and prior distribution of the unknown parameters to be Gaussian. In “The Elliptical Potential Lemma for General Distributions with an Application to Linear Thompson Sampling,” N. Hamidi and M. Bayati introduce a general version of the elliptical potential lemma that relaxes the Gaussian assumption. They also apply their general lemma to prove a minimax optimal Bayesian regret bound for the well-known Thompson sampling algorithm in stochastic linear bandits with changing action sets where prior and noise distributions are general.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"1 1","pages":"1434-1439"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2022.2274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A General Elliptical Potential Lemma In sequential learning and decision-making problems, the elliptical potential lemma is a key technique to quantify the decrease in the uncertainty of the model as more observations are obtained. However, it requires the observation noise and prior distribution of the unknown parameters to be Gaussian. In “The Elliptical Potential Lemma for General Distributions with an Application to Linear Thompson Sampling,” N. Hamidi and M. Bayati introduce a general version of the elliptical potential lemma that relaxes the Gaussian assumption. They also apply their general lemma to prove a minimax optimal Bayesian regret bound for the well-known Thompson sampling algorithm in stochastic linear bandits with changing action sets where prior and noise distributions are general.
技术说明-一般分布的椭圆势引理及其在线性汤普森抽样中的应用
在序列学习和决策问题中,椭圆势引理是一种量化模型不确定性随观测值增加而减少的关键技术。但是,它要求观测噪声和未知参数的先验分布为高斯分布。在“一般分布的椭圆势引理及其在线性汤普森抽样中的应用”中,N. Hamidi和M. Bayati介绍了椭圆势引理的一个一般版本,它放宽了高斯假设。他们还应用他们的一般引理证明了著名的汤普森抽样算法的最小最大最优贝叶斯遗憾界,该算法具有改变动作集的随机线性匪徒,其中先验和噪声分布是一般的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信