P. Psarrakos, Ch. Tsitouras
{"title":"Numerical approximation of the boundary of numerical range of matrix polynomials","authors":"P. Psarrakos, Ch. Tsitouras","doi":"10.1002/anac.200410029","DOIUrl":null,"url":null,"abstract":"<p>The numerical range of an <i>n</i> × <i>n</i> matrix polynomial <i>P</i>(<i>λ</i>) = <i>A</i><sub><i>m</i></sub><i>λ</i><sup><i>m</i></sup> + <i>A</i><sub><i>m</i>–1</sub><i>λ</i><sup><i>m</i>–1</sup> + … + <i>A</i><sub>1</sub><i>λ</i> + <i>A</i><sub>0</sub> is defined by <i>W</i>(<i>P</i>) = {<i>λ</i> ∈ ℂ : <i>x</i>*<i>P</i>(<i>λ</i>)<i>x</i> = 0, <i>x</i> ∈ ℂ<sup><i>n</i></sup>, <i>x</i>*<i>x</i> = 1}, and plays an important role in the study of matrix polynomials. In this paper, we describe a methodology for the illustration of its boundary, ∂<i>W</i>(<i>P</i>), using recent theoretical results on numerical ranges and algebraic curves. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"2 1","pages":"126-133"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410029","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The numerical range of an n × n matrix polynomial P(λ) = Amλm + Am–1λm–1 + … + A1λ + A0 is defined by W(P) = {λ ∈ ℂ : x*P(λ)x = 0, x ∈ ℂn, x*x = 1}, and plays an important role in the study of matrix polynomials. In this paper, we describe a methodology for the illustration of its boundary, ∂W(P), using recent theoretical results on numerical ranges and algebraic curves. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
矩阵多项式数值范围边界的数值逼近
n × n矩阵多项式P(λ) = Amλm + Am-1λm-1 +…+ A1λ + A0的数值范围由W(P) = {λ∈:x*P(λ)x = 0, x∈n, x*x = 1}定义,在矩阵多项式的研究中起着重要作用。在本文中,我们描述了一种方法来说明它的边界,∂W(P),使用最新的数值范围和代数曲线的理论结果。(©2005 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。