{"title":"Some Characterizations and NP-Complete Problems for Power Cordial Graphs","authors":"C. M. Barasara, Y. B. Thakkar","doi":"10.1155/2023/2257492","DOIUrl":null,"url":null,"abstract":"<jats:p>A power cordial labeling of a graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>G</mi>\n <mo>=</mo>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>V</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>,</mo>\n <mi>E</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is a bijection <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>f</mi>\n <mo>:</mo>\n <mi>V</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n <mo>⟶</mo>\n <mfenced open=\"{\" close=\"}\" separators=\"|\">\n <mrow>\n <mn>1,2</mn>\n <mo>,</mo>\n <mo>…</mo>\n <mo>,</mo>\n <mrow>\n <mfenced open=\"|\" close=\"|\" separators=\"|\">\n <mrow>\n <mi>V</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> such that an edge <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>e</mi>\n <mo>=</mo>\n <mi>u</mi>\n <mi>v</mi>\n </math>\n </jats:inline-formula> is assigned the label 1 if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>u</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>f</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>v</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> or <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>v</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>f</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>u</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>, for some <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>n</mi>\n <mo>∈</mo>\n <mi mathvariant=\"double-struck\">N</mi>\n <mo>∪</mo>\n <mfenced open=\"{\" close=\"}\" separators=\"|\">\n <mrow>\n <mn>0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and the label 0 otherwise, and satisfy the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. The graph that admits power cordial labeling is called a power cordial graph. In this paper, we derive some characterizations of power cordial graphs as well as explore NP-complete problems for power cordial labeling. This work also rules out any possibility of forbidden subgraph characterization for power cordial labeling.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2257492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A power cordial labeling of a graph is a bijection such that an edge is assigned the label 1 if or , for some and the label 0 otherwise, and satisfy the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. The graph that admits power cordial labeling is called a power cordial graph. In this paper, we derive some characterizations of power cordial graphs as well as explore NP-complete problems for power cordial labeling. This work also rules out any possibility of forbidden subgraph characterization for power cordial labeling.
图G = vg的幂正则标记,eg是对射f:1,2,…,V G使得边e = u v被赋标签为1,如果f u= f vN或f v =F - n,对于某个n∈n∪0,否则标记为0,并且满足标记为0的边的个数和标记为1的边的个数相差不超过1。允许幂诚恳标记的图称为幂诚恳图。本文给出了幂诚恳图的一些刻画,并探讨了幂诚恳标记的np完全问题。这项工作也排除了电力亲切标记的禁止子图表征的任何可能性。