{"title":"On a singular elliptic problem with variable exponent","authors":"Francesca Farraci","doi":"10.24193/subbmath.2023.1.03","DOIUrl":null,"url":null,"abstract":"\"In the present note we study a semilinear elliptic Dirichlet problem involving a singular term with variable exponent of the following type $$\\left\\{ \\begin{array}{ll} -\\Delta u= \\frac{f(x)}{u^{\\gamma(x)} }, & \\hbox{ in } \\Omega \\\\ u>0, & \\hbox{ in } \\Omega \\\\ u=0, & \\hbox{on } \\partial \\Omega \\end{array} \\right.\\eqno{(\\mathcal{P})}$$ Existence and uniqueness results are proved when $f\\geq 0$.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"2005 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
"In the present note we study a semilinear elliptic Dirichlet problem involving a singular term with variable exponent of the following type $$\left\{ \begin{array}{ll} -\Delta u= \frac{f(x)}{u^{\gamma(x)} }, & \hbox{ in } \Omega \\ u>0, & \hbox{ in } \Omega \\ u=0, & \hbox{on } \partial \Omega \end{array} \right.\eqno{(\mathcal{P})}$$ Existence and uniqueness results are proved when $f\geq 0$."