Machine Learning in Urban Tree Canopy Mapping: A Columbia, SC Case Study for Urban Heat Island Analysis

Q3 Social Sciences
Grayson R. Morgan, A. Fulham, T. G. Farmer
{"title":"Machine Learning in Urban Tree Canopy Mapping: A Columbia, SC Case Study for Urban Heat Island Analysis","authors":"Grayson R. Morgan, A. Fulham, T. G. Farmer","doi":"10.3390/geographies3020019","DOIUrl":null,"url":null,"abstract":"As the world’s urban population increases to the predicted 70% of the total population, urban infrastructure and built-up land will continue to grow as well. This growth will continue to have an impact on the urban heat island effect in all of the world’s cities. The urban tree canopy has been found to be one of the few factors that can lessen the effects of the urban heat island effect. This study seeks to accomplish two objectives: first, we examine the use of a commonly used machine learning classifier (e.g., Support Vector Machine) for identifying the urban tree canopy using no-cost high resolution NAIP imagery. Second, we seek to use Land Surface Temperature (LST) maps derived from no-cost Landsat thermal imagery to identify correlations between canopy loss and temperature hot spot increases over a 14-year period in Columbia, SC, USA. We found the SVM imagery classifier was highly accurate in classifying both the 2005 imagery (94.3% OA) and the 2019 imagery (94.25% OA) into canopy and other classes. We found the color infrared image available in the 2019 NAIP imagery better for identifying canopy than the true color images available in 2005 (97.8% vs. 90.2%). Visual analysis based on the canopy maps and LST maps showed temperatures rose near areas where tree canopy was lost, and urban development continued. Future studies will seek to improve classification methods by including other classes, other ancillary data sets (e.g., LiDAR), new classification methods (e.g., deep learning), and analytical methods for change detection analysis.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies3020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

As the world’s urban population increases to the predicted 70% of the total population, urban infrastructure and built-up land will continue to grow as well. This growth will continue to have an impact on the urban heat island effect in all of the world’s cities. The urban tree canopy has been found to be one of the few factors that can lessen the effects of the urban heat island effect. This study seeks to accomplish two objectives: first, we examine the use of a commonly used machine learning classifier (e.g., Support Vector Machine) for identifying the urban tree canopy using no-cost high resolution NAIP imagery. Second, we seek to use Land Surface Temperature (LST) maps derived from no-cost Landsat thermal imagery to identify correlations between canopy loss and temperature hot spot increases over a 14-year period in Columbia, SC, USA. We found the SVM imagery classifier was highly accurate in classifying both the 2005 imagery (94.3% OA) and the 2019 imagery (94.25% OA) into canopy and other classes. We found the color infrared image available in the 2019 NAIP imagery better for identifying canopy than the true color images available in 2005 (97.8% vs. 90.2%). Visual analysis based on the canopy maps and LST maps showed temperatures rose near areas where tree canopy was lost, and urban development continued. Future studies will seek to improve classification methods by including other classes, other ancillary data sets (e.g., LiDAR), new classification methods (e.g., deep learning), and analytical methods for change detection analysis.
城市树冠测绘中的机器学习:哥伦比亚,南卡罗来纳州城市热岛分析案例研究
随着世界城市人口增加到预计占总人口的70%,城市基础设施和建筑用地也将继续增长。这种增长将继续对世界上所有城市的城市热岛效应产生影响。城市树冠是缓解城市热岛效应的少数因素之一。本研究旨在实现两个目标:首先,我们研究了使用常用的机器学习分类器(例如,支持向量机)使用无成本高分辨率NAIP图像识别城市树冠。其次,我们试图使用来自无成本Landsat热图像的地表温度(LST)图来确定美国哥伦比亚州14年期间冠层损失与温度热点增加之间的相关性。我们发现SVM图像分类器将2005年的图像(OA为94.3%)和2019年的图像(OA为94.25%)分类为冠层和其他类别,准确率很高。我们发现2019年NAIP图像中可用的彩色红外图像比2005年可用的真彩色图像更好地识别冠层(97.8%比90.2%)。基于冠层图和地表温度图的可视化分析显示,在冠层消失的区域附近气温上升,城市发展继续进行。未来的研究将寻求通过包括其他类别、其他辅助数据集(如激光雷达)、新的分类方法(如深度学习)和用于变化检测分析的分析方法来改进分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Geographies
Human Geographies Social Sciences-Geography, Planning and Development
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信