Mining heterogeneous information networks: a structural analysis approach

Yizhou Sun, Jiawei Han
{"title":"Mining heterogeneous information networks: a structural analysis approach","authors":"Yizhou Sun, Jiawei Han","doi":"10.1145/2481244.2481248","DOIUrl":null,"url":null,"abstract":"Most objects and data in the real world are of multiple types, interconnected, forming complex, heterogeneous but often semi-structured information networks. However, most network science researchers are focused on homogeneous networks, without distinguishing different types of objects and links in the networks. We view interconnected, multityped data, including the typical relational database data, as heterogeneous information networks, study how to leverage the rich semantic meaning of structural types of objects and links in the networks, and develop a structural analysis approach on mining semi-structured, multi-typed heterogeneous information networks. In this article, we summarize a set of methodologies that can effectively and efficiently mine useful knowledge from such information networks, and point out some promising research directions.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"37 1","pages":"20-28"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"501","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2481244.2481248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 501

Abstract

Most objects and data in the real world are of multiple types, interconnected, forming complex, heterogeneous but often semi-structured information networks. However, most network science researchers are focused on homogeneous networks, without distinguishing different types of objects and links in the networks. We view interconnected, multityped data, including the typical relational database data, as heterogeneous information networks, study how to leverage the rich semantic meaning of structural types of objects and links in the networks, and develop a structural analysis approach on mining semi-structured, multi-typed heterogeneous information networks. In this article, we summarize a set of methodologies that can effectively and efficiently mine useful knowledge from such information networks, and point out some promising research directions.
挖掘异构信息网络:一种结构分析方法
现实世界中的大多数对象和数据都是多种类型的,相互关联,形成复杂的、异构的但往往是半结构化的信息网络。然而,大多数网络科学研究都集中在同质网络上,没有区分网络中不同类型的对象和链接。我们将包括典型关系数据库数据在内的相互关联的多类型数据视为异构信息网络,研究如何利用网络中对象和链路的结构类型丰富的语义,提出一种挖掘半结构化、多类型异构信息网络的结构分析方法。在本文中,我们总结了一套能够有效地从此类信息网络中挖掘有用知识的方法,并指出了一些有前景的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信