Synthesis and Studies on Polymer Electrolyte Membrane using Polyvinyl Alcohol, Polyvinylidene Fluoride and Ammonium Bromide as Dopants for Proton-conducting Electrolyte

Q3 Materials Science
V. Senthilkumar, Haresh M. Pandya, R. Kesavaraj, U. Ganesh, J. C. Roshan
{"title":"Synthesis and Studies on Polymer Electrolyte Membrane using Polyvinyl Alcohol, Polyvinylidene Fluoride and Ammonium Bromide as Dopants for Proton-conducting Electrolyte","authors":"V. Senthilkumar, Haresh M. Pandya, R. Kesavaraj, U. Ganesh, J. C. Roshan","doi":"10.13074/jent.2022.12.224460","DOIUrl":null,"url":null,"abstract":"Different compositions of Polyvinyl alcohol (PVA), Polyvinylidene fluoride (PVDF) and Ammonium bromide (NH4Br) were employed to synthesize the proton-conducting polymer electrolyte membranes by Solution casting method, which have potential applications in proton (H+) ion batteries and fuel cells. Structural, vibrational and electrical properties of the synthesized polymer electrolyte membrane were characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Electrical Impedance Spectroscopy (EIS) analysis and results were reported. The semi-crystalline nature of the prepared polymer was confirmed by XRD analysis. FTIR spectroscopy revealed the vibrational spectra of the prepared polymer membrane. The Nyquist plot drawn from the AC Impedance analysis was a straight line, confirming the dielectric nature of the prepared membrane.","PeriodicalId":36296,"journal":{"name":"Journal of Water and Environmental Nanotechnology","volume":"180 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environmental Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13074/jent.2022.12.224460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Different compositions of Polyvinyl alcohol (PVA), Polyvinylidene fluoride (PVDF) and Ammonium bromide (NH4Br) were employed to synthesize the proton-conducting polymer electrolyte membranes by Solution casting method, which have potential applications in proton (H+) ion batteries and fuel cells. Structural, vibrational and electrical properties of the synthesized polymer electrolyte membrane were characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Electrical Impedance Spectroscopy (EIS) analysis and results were reported. The semi-crystalline nature of the prepared polymer was confirmed by XRD analysis. FTIR spectroscopy revealed the vibrational spectra of the prepared polymer membrane. The Nyquist plot drawn from the AC Impedance analysis was a straight line, confirming the dielectric nature of the prepared membrane.
聚乙烯醇、聚偏氟乙烯和溴化铵作为质子导电电解质掺杂剂的聚合物电解质膜的合成与研究
以聚乙烯醇(PVA)、聚偏氟乙烯(PVDF)和溴化铵(NH4Br)为原料,采用溶液浇铸法制备了质子导电聚合物电解质膜,该电解质膜在质子(H+)离子电池和燃料电池中具有潜在的应用前景。采用x射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和电阻抗谱(EIS)对合成的聚合物电解质膜的结构、振动和电学性能进行了表征,并报道了结果。通过XRD分析证实了所制备聚合物的半结晶性质。FTIR光谱显示了聚合物膜的振动光谱。从交流阻抗分析中得出的奈奎斯特图是一条直线,证实了所制备膜的介电性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Water and Environmental Nanotechnology
Journal of Water and Environmental Nanotechnology Materials Science-Materials Science (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信