TWO-SIDED METHODS FOR SOLVING INITIAL VALUE PROBLEM FOR NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

IF 0.1
Y. Pelekh, A. Kunynets, R. Pelekh
{"title":"TWO-SIDED METHODS FOR SOLVING INITIAL VALUE PROBLEM FOR NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS","authors":"Y. Pelekh, A. Kunynets, R. Pelekh","doi":"10.17721/2706-9699.2022.2.13","DOIUrl":null,"url":null,"abstract":"Using the continued fractions and the method of constructing Runge-Kutta methods, numerical methods for solving the Cauchy problem for nonlinear Volterra non-linear integrodifferential equations are proposed. With appropriate values of the parameters, one can obtain an approximation to the exact solution of the first and second order of accuracy. We found a set of parameters for which we obtain two-sided calculation formulas, which at each step of integration allow to obtain the upper and lower approximations of the exact solution.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"7 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the continued fractions and the method of constructing Runge-Kutta methods, numerical methods for solving the Cauchy problem for nonlinear Volterra non-linear integrodifferential equations are proposed. With appropriate values of the parameters, one can obtain an approximation to the exact solution of the first and second order of accuracy. We found a set of parameters for which we obtain two-sided calculation formulas, which at each step of integration allow to obtain the upper and lower approximations of the exact solution.
求解非线性积分-微分方程初值问题的双面法
利用连分式和构造龙格-库塔方法,提出了求解非线性Volterra非线性积分微分方程Cauchy问题的数值方法。用适当的参数值,可以得到一阶和二阶精度的近似精确解。我们找到了一组参数,我们得到了双边计算公式,在积分的每一步都允许得到精确解的上近似和下近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信