Video Segmentation via Object Flow

Yi-Hsuan Tsai, Ming-Hsuan Yang, Michael J. Black
{"title":"Video Segmentation via Object Flow","authors":"Yi-Hsuan Tsai, Ming-Hsuan Yang, Michael J. Black","doi":"10.1109/CVPR.2016.423","DOIUrl":null,"url":null,"abstract":"Video object segmentation is challenging due to fast moving objects, deforming shapes, and cluttered backgrounds. Optical flow can be used to propagate an object segmentation over time but, unfortunately, flow is often inaccurate, particularly around object boundaries. Such boundaries are precisely where we want our segmentation to be accurate. To obtain accurate segmentation across time, we propose an efficient algorithm that considers video segmentation and optical flow estimation simultaneously. For video segmentation, we formulate a principled, multiscale, spatio-temporal objective function that uses optical flow to propagate information between frames. For optical flow estimation, particularly at object boundaries, we compute the flow independently in the segmented regions and recompose the results. We call the process object flow and demonstrate the effectiveness of jointly optimizing optical flow and video segmentation using an iterative scheme. Experiments on the SegTrack v2 and Youtube-Objects datasets show that the proposed algorithm performs favorably against the other state-of-the-art methods.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"51 1","pages":"3899-3908"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"325","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 325

Abstract

Video object segmentation is challenging due to fast moving objects, deforming shapes, and cluttered backgrounds. Optical flow can be used to propagate an object segmentation over time but, unfortunately, flow is often inaccurate, particularly around object boundaries. Such boundaries are precisely where we want our segmentation to be accurate. To obtain accurate segmentation across time, we propose an efficient algorithm that considers video segmentation and optical flow estimation simultaneously. For video segmentation, we formulate a principled, multiscale, spatio-temporal objective function that uses optical flow to propagate information between frames. For optical flow estimation, particularly at object boundaries, we compute the flow independently in the segmented regions and recompose the results. We call the process object flow and demonstrate the effectiveness of jointly optimizing optical flow and video segmentation using an iterative scheme. Experiments on the SegTrack v2 and Youtube-Objects datasets show that the proposed algorithm performs favorably against the other state-of-the-art methods.
通过对象流的视频分割
由于快速移动的物体、变形的形状和杂乱的背景,视频对象分割是具有挑战性的。光流可以用来随着时间传播物体分割,但不幸的是,光流通常是不准确的,特别是在物体边界附近。这样的边界正是我们希望分割准确的地方。为了获得准确的跨时间分割,我们提出了一种同时考虑视频分割和光流估计的高效算法。对于视频分割,我们制定了一个原则性的,多尺度的,时空目标函数,它使用光流在帧之间传播信息。对于光流估计,特别是在目标边界处,我们在分割区域中独立计算光流并重新组合结果。我们将该过程称为对象流,并证明了使用迭代方案联合优化光流和视频分割的有效性。在SegTrack v2和Youtube-Objects数据集上的实验表明,该算法与其他最先进的方法相比表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信