A decomposition theorem for 0-cycles and applications to class field theory

Rahul Gupta, A. Krishna, J. Rathore
{"title":"A decomposition theorem for 0-cycles and applications to class field theory","authors":"Rahul Gupta, A. Krishna, J. Rathore","doi":"10.2422/2036-2145.20211_018","DOIUrl":null,"url":null,"abstract":". We prove a decomposition theorem for the cohomological Chow group of 0-cycles on the double of a quasi-projective R 1 -scheme over a field along a closed subscheme, in terms of the Chow groups, with and without modulus, of the scheme. This yields a significant generalization of the decomposition theorem of Binda-Krishna. As applications, we prove a moving lemma for Chow groups with modulus and an analogue of Bloch’s formula for 0-cycles with modulus on singular surfaces. The latter extends a previous result of Binda-Krishna-Saito.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.20211_018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

. We prove a decomposition theorem for the cohomological Chow group of 0-cycles on the double of a quasi-projective R 1 -scheme over a field along a closed subscheme, in terms of the Chow groups, with and without modulus, of the scheme. This yields a significant generalization of the decomposition theorem of Binda-Krishna. As applications, we prove a moving lemma for Chow groups with modulus and an analogue of Bloch’s formula for 0-cycles with modulus on singular surfaces. The latter extends a previous result of Binda-Krishna-Saito.
0环分解定理及其在类场论中的应用
. 利用拟射影r1 -格式的有模和无模的Chow群,证明了该格式沿闭子格式在域上的重上的0环上同调Chow群的分解定理。这产生了对Binda-Krishna分解定理的一个重要推广。作为应用,我们证明了具有模的Chow群的一个移动引理和奇异曲面上具有模的0环的Bloch公式的一个模拟。后者扩展了Binda-Krishna-Saito之前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信