{"title":"Almost sure behavior of linearly edge-reinforced random walks on the half-line","authors":"Masato Takei","doi":"10.1214/21-ejp674","DOIUrl":null,"url":null,"abstract":"We study linearly edge-reinforced random walks on $\\mathbb{Z}_+$, where each edge $\\{x,x+1\\}$ has the initial weight $x^{\\alpha} \\vee 1$, and each time an edge is traversed, its weight is increased by $\\Delta$. It is known that the walk is recurrent if and only if $\\alpha \\leq 1$. The aim of this paper is to study the almost sure behavior of the walk in the recurrent regime. For $\\alpha 0$, we obtain a limit theorem which is a counterpart of the law of the iterated logarithm for simple random walks. This reveals that the speed of the walk with $\\Delta>0$ is much slower than $\\Delta=0$. In the critical case $\\alpha=1$, our (almost sure) bounds for the trajectory of the walk shows that there is a phase transition of the speed at $\\Delta=2$.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"462 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ejp674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We study linearly edge-reinforced random walks on $\mathbb{Z}_+$, where each edge $\{x,x+1\}$ has the initial weight $x^{\alpha} \vee 1$, and each time an edge is traversed, its weight is increased by $\Delta$. It is known that the walk is recurrent if and only if $\alpha \leq 1$. The aim of this paper is to study the almost sure behavior of the walk in the recurrent regime. For $\alpha 0$, we obtain a limit theorem which is a counterpart of the law of the iterated logarithm for simple random walks. This reveals that the speed of the walk with $\Delta>0$ is much slower than $\Delta=0$. In the critical case $\alpha=1$, our (almost sure) bounds for the trajectory of the walk shows that there is a phase transition of the speed at $\Delta=2$.