{"title":"Collapsing K3 surfaces and Moduli compactification","authors":"Y. Odaka, Y. Oshima","doi":"10.3792/pjaa.94.81","DOIUrl":null,"url":null,"abstract":"This note is a summary of our work [OO] which provides an explicit and global moduli-theoretic framework for the collapsing of Ricci-flat Kahler metrics and we use it to study especially the K3 surfaces case. For instance, it allows us to discuss their Gromov-Hausdorff limits along any sequences, which are even not necessarily \"maximally degenerating\". Our results also give a proof of Kontsevich-Soibelman [KS04, Conjecture 1] (cf., [GW00, Conjecture 6.2]) in the case of K3 surfaces as a byproduct.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.94.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This note is a summary of our work [OO] which provides an explicit and global moduli-theoretic framework for the collapsing of Ricci-flat Kahler metrics and we use it to study especially the K3 surfaces case. For instance, it allows us to discuss their Gromov-Hausdorff limits along any sequences, which are even not necessarily "maximally degenerating". Our results also give a proof of Kontsevich-Soibelman [KS04, Conjecture 1] (cf., [GW00, Conjecture 6.2]) in the case of K3 surfaces as a byproduct.